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Dijkstra

 Recall: when x is selected, it becomes dead
* Thesis: when x is selected (and closed), we know its optimal cost-to-come

* Proof sketch: induction argument over the number of dead nodes (call it d)
obtained after selection of x from Q

Base case:

d=1 then x is the initial state for which the optimal cost-to-come is known to be 0 (d=0
cannot happen from the definition of forward search)

Inductive step:
d=N (thesis holds for the previously selected N-1 dead nodes)

1. to reach x, we must visit a node currently in Q: impossible, their cost-to-come is
higher than that of x and x would not have been selected

2. toreach x we visit only dead nodes: possible, from inductive assumption we know
that we got the optimal plan to each of those nodes

then C(x) is actually C*(x)



Dijkstra

Why we need shortest paths to solve planning for feasibility?

Because by solving for minimum cost plans we also solve for feasibility: if the
algorithm computed a cost for a node x then we have a plan to reach it, otherwise
the state cannot be reached

Dijkstra runs in O(|V|In|V|+]|E|) with “clever” implementation of Q (Fibonacci
heap)

It’s systematic



A*

* |t's a generalization of Dijkstra where the queue is sorted according to this
function

A

C*(x) + G*(x)

N\

cost-to-come estimate of the minimum cost-to-go

e cost-to-go: the cost for going from x to the goal

* [t guarantees to find the minimum cost plan (like Dijkstra) provided that
we do not overestimate the cost-to-go (see previous proof sketch)

¢ Ifweset G*(z) = 0 we obtain Dijsktra
* The better our estimates, the fewer nodes are visited w.r.t. Dijkstra
* |t’s systematic
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Not overestimating the cost-to-go
(admissible heuristic)



Best first

Q is sorted using only the estimate of the cost-to-go

Does not guarantee minimum cost plans so... it doesn’t matter if costs are
overestimated!
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Iterative deepening and IDA*

|dea: try to make depth-first search systematic

Straightforward approach:
— use DFS to find all plans with length <=/
— if goal was not found, i++ and repeat

Usually more efficient than BFS (especially with large branching factors):
if the nearest goal is i hops away from the initial state, in the worst case
BFS could try all nodes at i+1 hops first

IDA* naturally follows when applying this idea to A* by introducing
allowed total costs



Backward search

Symmetric template of forward search:

M\@

We can just use forward search on the state transition graph where we reversed the
arcs

Useful when branching is very high when starting from x,



Backward search (example?)
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Bidirectional search

* Template combining forward and backward search:

W e
T -

what’s happening here?

* We need to grow the two trees so that they tend to meet quickly. It can be difficult.



Planning for optimality

Let us extend the formulation we presented for the feasibility version

Call K the length of a plan, and x,,, the state reached when action u, from the plan is applied

This plan of K actions mx = (u1, U2, ..., UK)
causes the following sequence of states £y — T2 — 3 — ... =& TK 41

which we might relabel for convenience 1 — 2 — 3 — ... 7 TF
OO Xgis not a goal state

K
This plan hasacost:  L(mg) = > l(us, x;) Hip(xp) |
=1 0 X:isagoal state

We want to minimize the cost of a plan

With this definition of plan cost we enforce feasibility through optimization: seeking for
optimal plans entails seeking also for feasible ones



Fixed length plans

Problem: find the optimal (minimum cost) plan which has length upper bounded
by K

Idea: let’s make a list of all the <=K length plans and evaluate their cost, then
choose the best

O(IUI*)

\ 4

We don’t have to do this thanks to Bellman’s principle of optimality



Principle of optimality

* For some problems optimality admits a recursive definition

Q=L@

optimal plan

QL@

optimal sub-plan + optimal sub-plan

e Optimal substructure: construct an optimal solution for P exploiting optimal
solutions of sub-problems of P
e This principle leads to a resolution method called value iteration



Backward value iteration

* |dea: compute cost-to-go backwards

K
G - : { I 1 / } Cost from x, to x; along the
’“(xk) u.kmlITILK Ek (u“x?’) i F(mF) optimal plan



Backward value iteration

Gp =G — Gy — ... > G]



Backward value iteration

Gpr— G =G 41— ... > GY

!

Gi(xp) =lp(zp) Atima/ cost-to-go for any state if final or ...

... optimal cost for the empty plan



Backward value iteration

Gpr— G =G 41— ... > GY

!

Gr(rr) F lr(zF)

v?c(CUK) = min {l(uK, Tr) + G}(f(ﬂfKauK))}

UK

\Aotima/ cost-to-go for any state when being right before the final one or ...
.. optimal cost of the plan with length 1

We can recursively propagate this reasoning scheme obtaining ...



Backward value iteration

GZ(xk):min{l(ajk,uk)—f- min { § l(:ni,ui)—&—lF(a:F)}}

U Uk+1--UK LGt q

optimal sub-plan from x,,,

G (zr) = min {l(mk, ug) + GZ+1($[€+1)}

U

If we “unroll” the execution of this recursive procedure we obtain:

Gp =G =G4 — ... > G]

in O(K|X]|U[), G*; gives the cost of the optimal plan, the actual plan can be obtained by
backward annotation of argmins



Plans of arbitrary length

Remove the length limit and add a termination action a,

If applied it does not change the current state, does not cause any cost
and must be applied forever from there on

We stop our backward value iteration when it converges, i.e., G does not
change anymore

Ok only if costs are non-negative



Planning under uncertainty

* Action selection is often affected by uncertainty

e Example:




Planning under uncertainty

* Action selection is often affected by uncertainty

e Example:




Planning under uncertainty

Action selection is often affected by uncertainty
Example:
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Planning under uncertainty

* Action selection is often affected by uncertainty

e Example:
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Planning under uncertainty

Are the effects of
my actions
perfectly
predictable?

Am | always sure
about what’s
going on?

Deterministic Fully observable
VS Vs
Stochastic Partially observable
transitions states



Examples

e Deterministic transitions, fully observable states

* Only actuation is needed, no sensing!

move B




Examples

* Stochastic transitions, fully observable states

Surveillance :
robot

# - Technology

Securirty robot 'drowns itself' in office
fountain

Broken



Examples
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Deterministic transitions, partially observable states



Examples
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Stochastic transitions, partially observable states
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