
Sistemi Intelligenti
Corso di Laurea in Informatica, A.A. 2017-2018

Università degli Studi di Milano

Nicola Basilico
Dipartimento di Informatica
Via Comelico 39/41 - 20135 Milano (MI)
Ufficio S242
nicola.basilico@unimi.it
+39 02.503.16294 Sito per queste lezioni

Discrete planning
(an introduction)

mailto:nicola.basilico@unimi.it

Dijkstra
• Recall: when x is selected, it becomes dead

• Thesis: when x is selected (and closed), we know its optimal cost-to-come

• Proof sketch: induction argument over the number of dead nodes (call it d)
obtained after selection of x from Q

Base case:

d=1 then x is the initial state for which the optimal cost-to-come is known to be 0 (d=0
cannot happen from the definition of forward search)

Inductive step:

d=N (thesis holds for the previously selected N-1 dead nodes)

1. to reach x, we must visit a node currently in Q: impossible, their cost-to-come is
higher than that of x and x would not have been selected

2. to reach x we visit only dead nodes: possible, from inductive assumption we know
that we got the optimal plan to each of those nodes

then C(x) is actually C*(x)

Dijkstra
• Why we need shortest paths to solve planning for feasibility?

• Because by solving for minimum cost plans we also solve for feasibility: if the
algorithm computed a cost for a node x then we have a plan to reach it, otherwise
the state cannot be reached

• Dijkstra runs in O(|V|ln|V|+|E|) with “clever” implementation of Q (Fibonacci
heap)

• It’s systematic

A*

• It’s a generalization of Dijkstra where the queue is sorted according to this
function

cost-to-come estimate of the minimum cost-to-go

• cost-to-go: the cost for going from x to the goal

• It guarantees to find the minimum cost plan (like Dijkstra) provided that
we do not overestimate the cost-to-go (see previous proof sketch)

• If we set we obtain Dijsktra

• The better our estimates, the fewer nodes are visited w.r.t. Dijkstra

• It’s systematic

A*

Not overestimating the cost-to-go
(admissible heuristic)

Best first

• Q is sorted using only the estimate of the cost-to-go

• Does not guarantee minimum cost plans so… it doesn’t matter if costs are
overestimated!

• Way faster and efficient
• If something looks good,

even very early, it will take
it: too greedy!

• Not systematic

Iterative deepening and IDA*

• Idea: try to make depth-first search systematic

• Straightforward approach:

– use DFS to find all plans with length <=i

– if goal was not found, i++ and repeat

• Usually more efficient than BFS (especially with large branching factors):
if the nearest goal is i hops away from the initial state, in the worst case
BFS could try all nodes at i+1 hops first

• IDA* naturally follows when applying this idea to A* by introducing
allowed total costs

Backward search

• Symmetric template of forward search:

• We can just use forward search on the state transition graph where we reversed the
arcs

• Useful when branching is very high when starting from xI

goal start

Backward search (example?)

Bidirectional search

• Template combining forward and backward search:

what’s happening here?

• We need to grow the two trees so that they tend to meet quickly. It can be difficult.

Planning for optimality

• Let us extend the formulation we presented for the feasibility version

• Call K the length of a plan, and xk+1 the state reached when action uk from the plan is applied

This plan of K actions

causes the following sequence of states

which we might relabel for convenience

This plan has a cost:
XF is a goal state

XF is not a goal state

• We want to minimize the cost of a plan

• With this definition of plan cost we enforce feasibility through optimization: seeking for
optimal plans entails seeking also for feasible ones

Fixed length plans

• Problem: find the optimal (minimum cost) plan which has length upper bounded
by K

• Idea: let’s make a list of all the <=K length plans and evaluate their cost, then
choose the best

We don’t have to do this thanks to Bellman’s principle of optimality

Principle of optimality

• For some problems optimality admits a recursive definition

start goal

optimal plan

start goal

optimal sub-plan + optimal sub-plan

• Optimal substructure: construct an optimal solution for P exploiting optimal
solutions of sub-problems of P

• This principle leads to a resolution method called value iteration

Backward value iteration

Cost from xk to xF along the
optimal plan

• Idea: compute cost-to-go backwards

Backward value iteration

Backward value iteration

optimal cost-to-go for any state if final or …

… optimal cost for the empty plan

Backward value iteration

optimal cost-to-go for any state when being right before the final one or …
.. optimal cost of the plan with length 1

We can recursively propagate this reasoning scheme obtaining …

Backward value iteration

optimal sub-plan from xk+1

If we “unroll” the execution of this recursive procedure we obtain:

in O(K|X||U|), G*1 gives the cost of the optimal plan, the actual plan can be obtained by
backward annotation of argmins

Plans of arbitrary length

• Remove the length limit and add a termination action at

• If applied it does not change the current state, does not cause any cost
and must be applied forever from there on

• We stop our backward value iteration when it converges, i.e., G does not
change anymore

• Ok only if costs are non-negative

Planning under uncertainty

• Action selection is often affected by uncertainty

• Example:

Planning under uncertainty

• Action selection is often affected by uncertainty

• Example:

Planning under uncertainty

• Action selection is often affected by uncertainty

• Example:

Fast forward for 2 seconds

Planning under uncertainty

• Action selection is often affected by uncertainty

• Example:

Fast forward for 2 seconds

?

Planning under uncertainty

Am I always sure
about what’s

going on?

Are the effects of
my actions
perfectly

predictable?

Deterministic
vs

Stochastic
transitions

Fully observable
vs

Partially observable
states

Examples

A B
move B

• Deterministic transitions, fully observable states

• Only actuation is needed, no sensing!

Pos
A

Pos
B

move B

• Stochastic transitions, fully observable states

Pos
C

Broken

Surveillance
robot

Examples

Examples

Pos
A

Pos
B

move

Deterministic transitions, partially observable states

Pos
C

movePos
D

?
?

Examples

Pos
A

Pos
B

move

Stochastic transitions, partially observable states

Pos
C

movePos
D

?
?

Broken

0.99

0.99

Sistemi Intelligenti
Corso di Laurea in Informatica, A.A. 2017-2018

Università degli Studi di Milano

Nicola Basilico
Dipartimento di Informatica
Via Comelico 39/41 - 20135 Milano (MI)
Ufficio S242
nicola.basilico@unimi.it
+39 02.503.16294

mailto:nicola.basilico@unimi.it

