Sistemi Intelligenti
Corso di Laurea in Informatica, A.A. 2017-2018
Universita degli Studi di Milano

Discrete planning
(an introduction)

Nicola Basilico

Dipartimento di Informatica

Via Comelico 39/41 - 20135 Milano (M)
Ufficio S242

nicola.basilico@unimi.it

+39 02.503.16294

{b Sito per queste lezioni

mailto:nicola.basilico@unimi.it

Flavors in discrete planning

Simplest class of planning problems: no uncertainties, finite or countable state space

Planning for feasibility Planning for optimaB
A== I__LTL|'|-"-' A== ElET= |
SlEiingl = j HllEeE=
j Ji% Lﬂjl M - iE Eﬁf M

| —])

I .:
' is there an exit? what’s the shortest

ity

Hll,—.:l

= |l,—.:|

(problem solving) route to exit?

Formulation

* Single agent, multiple agents (doesn’t matter at this stage)

Formulation

* Single agent, multiple agents (doesn’t matter at this stage)
 Xisthe set of states, x is a generic state, abstraction

Formulation

* Single agent, multiple agents (doesn’t matter at this stage)
 Xisthe set of states, x is a generic state, abstraction
* U(x) is the set of actions that can be undertaken in state x, u is a generic action

Formulation

Single agent, multiple agents (doesn’t matter at this stage)
X is the set of states, x is a generic state, abstraction
U(x) is the set of actions that can be undertaken in state x, u is a generic action

If action u is taken in state x then state x’=f(x,u) is reached, f is the transition
function (deterministic)

Formulation

Single agent, multiple agents (doesn’t matter at this stage)
X is the set of states, x is a generic state, abstraction
U(x) is the set of actions that can be undertaken in state x, u is a generic action

If action u is taken in state x then state x’=f(x,u) is reached, f is the transition
function (deterministic)

There is a initial state x, and a set of goal states X

Formulation

Single agent, multiple agents (doesn’t matter at this stage)
X is the set of states, x is a generic state, abstraction
U(x) is the set of actions that can be undertaken in state x, u is a generic action

If action u is taken in state x then state x’=f(x,u) is reached, f is the transition
function (deterministic)

There is a initial state x, and a set of goal states X

Equivalent representation: state transition graph G=(V,E)

we will use “state” and “node” as interchangeable terms

Example

Consider a mobile robot moving on a graph-represented
environment:

States: nodes of the graph, they represent physical locations

Edges: represent connections between nearby locations or,
equivalently, movement actions

Initial state: some starting location for the robot

Goal state(s): some location(s) to reach, e.g., recharging
station, parking depot...

PO

MILANO 2015

FEEDING THE PLANET

ENERGY FOR LIFE

F

- O THEMATIC AREAS
| | O EVENT AREAS
[W

O SERVICE AREAS

OFFICIAL PARTICIPANTS
SELF BUILT LOTS

@ OFFICIAL PARTICIPANTS
_/ CLUSTERS

O PALAZZO ITALIA

Example

=£PO

MILANO 2015

FEEDING THE PLANET
ENERGY FOR LIFE

y |

B
¥ |

[}
¥ J

F M\ Eze T CFRCIAL PAATICIFANTS
i TS CANERS Or,: FEUILT LOTS

/ﬂ " CFRCIAL FARTICIFANTS
EVENT ARESS CUISTERS

O SERVICE AREAS PALAZZO MTALA

'\/ CORPORATE

It CIVIL SOCIETY

W”«

.f
.y PP

4"),«,‘,

/1/,"‘%;\\

starting location ‘\%".‘\‘m\

1N, A

LU NN \

R
7 AT

Example

Specification

How to specify a planning problem?

First approach: provide the full state transition graph G (that’s what we did
in the previous example)

Most of the times is not an affordable option due to the combinatorial
nature of the state space:

Specification

How to specify a planning problem?

First approach: provide the full state transition graph G (that’s what we did
in the previous example)

Most of the times is not an affordable option due to the combinatorial
nature of the state space:

EA L We & A E|°* Chessboard: approx. 104 states
AAAAAAAA

* We can specify the initial state and the transition
function in some compact form (e.g., set of rules to
generate next states)

DG D
1S5 po
e Pov
E b
B po
o= Poe
15 por
DG Do

The planning problem “unfolds” as search progresses

Searching for a plan

Objective: find a feasible plan, i.e., any sequence of actions
bringing the world from the initial state to a goal state

Classical approach: searching on the state transition graph

Search algorithm:
— iteratively visits nodes until a goal is eventually found
— generates a search graph which is a sub-graph of G

A search algorithm can be systematic or non-systematic

Systematic search

* If the graph is finite (finite state space) the algorithm will eventually visit
all reachable states:

— preventing redundant exploration suffices to enforce a systematic search

— always terminates with a “yes” or “no” answer

* |f the graph is infinite (infinite state space)?
— if the answer is “yes” the algorithm must terminate
— if the answer is “n0o”, it’s ok if it goes on forever but ...

— ... all reachable states must be visited in the limit: as time goes to infinity, all
states are visited (this definition is sound under the assumption of countable
state space)

Non-systematic search

* The algorithm cannot guarantee to fully cover the state space

* [t might terminate with a “no” answer (or not terminate) even
if the problem admits a solution

Example

is there a

route from
IN to OUT?

S| npE!
i i
A—I_IF L
o =

| =
=l

Example

t— I 'Il_ 1 B _IJ_I L|| Jli

|_ L_ = S U = -

. |_—_|'_| L = '

Systematic &'::"m_] : __I|'|_I %-_ A—I_I I

' = 1 M L

[=J|[E [If=10| | ¢ —
-T2 (=2 : | -
lliEEESEER

» Searching along multiple trajectories (either concurrently or not)

Example

Non-systematic m
(D mop |

|:_ 'Il_ -'I__-I_ll_I|J|i
! jr'ﬁjzl'j ——
— : n-r-:p"ll
E 1 : M i
sSIHI=UInT =11 =
a2 ([EE |
i . =\ =
U IEEES| =

* Searching along a single trajectory

Example

|
=

is there a
route from
IN to OUT?

o

.

—

INEETE

E
I_I —_—
=T I

| =

—
mi=
1
1

* What would happen with an infinite labyrinth? (We
actually need to require that the free area that can be
reached from IN is infinite)

Forward search

* |dea: exploring the graph starting from the initial node, trying to find our
way to the goal

@/\M/\

e At any step during the search, a node can have one of three labels:

— unvisited: still needs to be visited by the algorithm
— alive: visited, but the algorithm still needs to visit nodes directly reachable

from it
— dead: visited, and any “next node” has been visited as well

* Alive nodes are store in a priority queue Q

Forward search

FORWARD_SEARCH

1 Q.Insert(x;) and mark z; as visited

2 while @ not empty do

3 z < Q.GetFirst() Sorts the queue and pops the first element
4 if r € Xg

5 return SUCCESS

6 forall v € U(x) : :

- ¥ f(z.u) Expansion: getting the next states
8 if ' not visited

9 Mark z’ as visited

10 Q. Insert(x')

11 else Typically discards the vertex or
12 Resolve duplicate 2 ypdates some cost measure

13 return FAILURE

Forward search

FORWARD_SEARCH

1 Q.Insert(x;) and mark z; as visited

2 while @ not empty do

3 z + Q.GetFirst() Sorts the queue and pops the first element
4 if r € Xg

5 return SUCCESS

6 forall u € U(x) : :

- v f(z.u) Expansion: getting the next states
8 if 2’ not visited

9 Mark 2" as visited

10 Q. Insert(x')

11 else Typically discards the vertex or
12 Resolve duplicate 2 ypdates some cost measure

13 return FAILURE

* If the answer is “yes”, how to get the plan?
* How to check if a node is visited?

* It’s not an algorithm, it’s a template for an algorithm: to get an actual algorithm we
need to specify the sorting criteria for Q

Breadth first search

Qs a FIFO queue

Plans with k+1 actions are evaluated after any plan with k actions has been
searched

If found, the plan is guaranteed to have the least number of actions (shortest
plan)
It’s systematic, runs in O(|V| + |E])

JouivoN

?{ ®\ R

AL ORY RE
%QR(POR ”‘RR@O

Depth first search

 Qisastack (LIFO queue)
* More aggressive, searches long plans early
e Still runsin O(|V]|+|E])

O,
8 R
Arpe iy
gR Oﬂp Og%\&
& O O O

e Systematic?

Depth first search

 Qisastack (LIFO queue)

* More aggressive, searches long plans early
e Still runsin O(|V]|+|E])

O,
/@R’\ Q’O‘R
AR

e Systematic? Only with finite state spaces!

Dijkstra

* Introducing preferences in the expansion step: which action do I try first?
 We need to extend our problem formulation

Z(ZC) cost for picking action u in state x or...
? ... for going from state x to state f(x,u)

Dijkstra

Introducing preferences in the expansion step: which action do I try first?
We need to extend our problem formulation

Z(ZC) cost for picking action u in state x or...
? ... for going from state x to state f(x,u)

Cost of a plan: sum of all the state transition costs for going from the initial
state to the goal state

During the search the algorithm keeps track of the cost-to-come for each
alive state x

() it’s the cost paid by the algorithm to
reach x from the initial state

Dijkstra

Introducing preferences in the expansion step: which action do I try first?
We need to extend our problem formulation

Z(ZC) cost for picking action u in state x or...
? ... for going from state x to state f(x,u)

Cost of a plan: sum of all the state transition costs for going from the initial
state to the goal state

During the search the algorithm keeps track of the cost-to-come for each
alive state x

(.SC) it’s the cost paid by the algorithm to
reach x from the initial state

It’s a forward search where Q is sorted according to C from smallest to
highest cost-to-come

Each state has an optimal cost which is initially unknown C*(z)

Dijkstra

Initially set C*(z;) =0
When expanding x to obtain state x’, set

C(z) =C*(x) + l(x,u)
If X" was already visited and the newly discovered path induces a lower

cost-to-come, update C(z')

After running the whole forward search we get the minimum cost plan
from the initial node to any other one

Why? When we select x for expansion (getting the first node from Q) we
are guaranteed that its current cost-to-come is optimal (that’s the reason
for the * in the above equation). Proof?

