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Flavors in discrete planning

Simplest class of planning problems: no uncertainties, finite or countable state space

Planning for feasibility

is there an exit?
(problem solving)

what’s the shortest 
route to exit?

Planning for optimality
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Formulation

• Single agent, multiple agents (doesn’t matter at this stage)

• X is the set of states, x is a generic state, abstraction

• U(x) is the set of actions that can be undertaken in state x, u is a generic action

• If action u is taken in state x then state x’=f(x,u) is reached, f is the transition 
function (deterministic)

• There is a initial state xi and a set of goal states XG

• Equivalent representation: state transition graph G=(V,E)

we will use “state” and “node” as interchangeable terms



Example

Consider a mobile robot moving on a graph-represented 
environment:

• States: nodes of the graph, they represent physical locations

• Edges: represent connections between nearby locations or, 
equivalently, movement actions

• Initial state: some starting location for the robot

• Goal state(s): some location(s) to reach, e.g., recharging 
station, parking depot…
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Example

starting location

goal locations



Specification

• How to specify a planning problem?

• First approach: provide the full state transition graph G (that’s what we did 
in the previous example)

• Most of the times is not an affordable option due to the combinatorial 
nature of the state space:



Specification

• How to specify a planning problem?

• First approach: provide the full state transition graph G (that’s what we did 
in the previous example)

• Most of the times is not an affordable option due to the combinatorial 
nature of the state space:

• Chess board: approx. 1047 states

• We can specify the initial state and the transition 
function in some compact form (e.g., set of rules to 
generate next states)

• The planning problem “unfolds” as search progresses



Searching for a plan

• Objective: find a feasible plan, i.e., any sequence of actions 
bringing the world from the initial state to a goal state

• Classical approach: searching on the state transition graph

• Search algorithm: 
– iteratively visits nodes until a goal is eventually found
– generates a search graph which is a sub-graph of G

• A search algorithm can be systematic or non-systematic



Systematic search

• If the graph is finite (finite state space) the algorithm will eventually visit 
all reachable states: 

– preventing redundant exploration suffices to enforce a systematic search

– always terminates with a “yes” or “no” answer

• If the graph is infinite (infinite state space)? 

– if the answer is “yes” the algorithm must terminate

– if the answer is “no”, it’s ok if it goes on forever but …

– … all reachable states must be visited in the limit: as time goes to infinity, all 
states are visited (this definition is sound under the assumption of countable 
state space)



Non-systematic search

• The algorithm cannot guarantee to fully cover the state space

• It might terminate with a “no” answer (or not terminate) even 
if the problem admits a solution



Example

IN

OUT

is there a 
route from 
IN to OUT?



Example

IN

OUT

Systematic

• Searching along multiple trajectories (either concurrently or not)



Example

IN

OUT

Non-systematic

• Searching along a single trajectory



Example

IN

OUT

• What would happen with an infinite labyrinth? (We 
actually need to require that the free area that  can be 
reached from IN is infinite)

is there a 
route from 
IN to OUT?



Forward search

• Idea: exploring the graph starting from the initial node, trying to find our 
way to the goal

• At any step during the search, a node can have one of three labels:

– unvisited: still needs to be visited by the algorithm

– alive: visited, but the algorithm still needs to visit nodes directly reachable 
from it

– dead: visited, and any “next node” has been visited as well

• Alive nodes are store in a priority queue Q

start goal



Forward search

Sorts the queue and pops the first element

Expansion: getting the next states

Typically discards the vertex or 
updates some cost measure



Forward search

• If the answer is “yes”, how to get the plan?

• How to check if a node is visited?

• It’s not an algorithm, it’s a template for an algorithm: to get an actual algorithm we 
need to specify the sorting criteria for Q

Sorts the queue and pops the first element

Expansion: getting the next states

Typically discards the vertex or 
updates some cost measure



Breadth first search

• Q is a FIFO queue

• Plans with k+1 actions are evaluated after any plan with k actions has been 
searched

• If found, the plan is guaranteed to have the least number of actions (shortest 
plan)

• It’s systematic, runs in O(|V| + |E|)



Depth first search

• Q is a stack (LIFO queue) 

• More aggressive, searches long plans early

• Still runs in O(|V|+|E|)

• Systematic?



Depth first search

• Q is a stack (LIFO queue) 

• More aggressive, searches long plans early

• Still runs in O(|V|+|E|)

• Systematic? Only with finite state spaces!
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Dijkstra

• Introducing preferences in the expansion step: which action do I try first?

• We need to extend our problem formulation

cost for picking action u in state x or… 
… for going from state x to state f(x,u)

• Cost of a plan: sum of all the state transition costs for going from the initial 
state to the goal state

• During the search the algorithm keeps track of the cost-to-come for each 
alive state x

it’s the cost paid by the algorithm to 
reach x from the initial state



Dijkstra

• Introducing preferences in the expansion step: which action do I try first?

• We need to extend our problem formulation

cost for picking action u in state x or… 
… for going from state x to state f(x,u)

• Cost of a plan: sum of all the state transition costs for going from the initial 
state to the goal state

• During the search the algorithm keeps track of the cost-to-come for each 
alive state x

• It’s a forward search where Q is sorted according to C from smallest to 
highest cost-to-come

• Each state has an optimal cost which is initially unknown

it’s the cost paid by the algorithm to 
reach x from the initial state



Dijkstra

• Initially set

• When expanding x to obtain state x’, set

• If x’ was already visited and the newly discovered path induces a lower 
cost-to-come, update 

• After running the whole forward search we get the minimum cost plan 
from the initial node to any other one

• Why? When we select x for expansion (getting  the first node from Q) we 
are guaranteed that its current cost-to-come is optimal (that’s the reason 
for the * in the above equation). Proof?


