## Sistemi Intelligenti

Corso di Laurea in Informatica, A.A. 2019-2020
Università degli Studi di Milan

## (5) <br> Search algorithms for planning

Nicola Basilico<br>Dipartimento di Informatica<br>Via Celoria 18-20133 Milano (MI)<br>Ufficio 4008<br>nicola.basilico@unimi.it<br>+39 02.503.16289

## UCS with extended list



- Thanks to the extended list we can prune two branches


## Implementation



The goal check is done when the node is selected (not when is generated)

- Question: is this search informed?


## $A^{*}$

- The informed version of UCS is called A*
- Very popular search algorithm
- It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and Raphael had to face a practical problem with Shakey (one of the ancestors of today's mobile robots)



## $A^{*}$

- The idea behind $A^{*}$ is simple: perform a UCS, but instead of considering accumulated costs consider the following:

- To guarantee that the search is sound and complete we need to require that the heuristic is admissible: it is an optimistic estimate or, more formally:
$h(n) \leq$ Cost of the minimum path from n to the goal
- If the heuristic is not admissible we might discard a path that could actually turn out to be better that the best candidate found so far
$A^{*}$


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 7 |
| C | 1 |
| D | 3 |
| E | 0 |
| F | 7 |
| G | 2 |

$A^{*}$

$\underset{0+10=10}{\text { A }}$

| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 7 |
| C | 1 |
| D | 3 |
| E | 0 |
| F | 7 |
| G | 2 |

$A^{*}$

$A^{*}$

$A^{*}$

$A^{*}$

$A^{*}$

$A^{*}$

$A^{*}$

$A^{*}$


- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |

## A*

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |

## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |

## A*

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |

## A*

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:


| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |

## A*

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:



## A*

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:



## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$5+3+4+100+0=112$


## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$5+3+4+100+0=112$


## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$5+3+4+100+0=112$


## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

$5+3+4+100+0=112$


## $A^{*}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- We need to require a stronger property: consistency
- For any connected nodes u and $\mathrm{v}: h(v) \leq c(v, u)+h(u)$

- It's a sort of triangle inequality, let's reconsider our pathological instance:

| node $v$ | $h(v)$ |
| :---: | :---: |
| A | 10 |
| B | 0 |
| C | 1 |
| D | 0 |
| E | 0 |
| F | 100 |
| G | 0 |



## Optimality of $A^{*}$

$$
\begin{aligned}
& f(v)=g(v)+h(v) \\
& f(u)=\overline{g(u)}+h(u)=\overline{g(v)+\underline{c(v, u})}+h(u) \geq g(v)+\underline{h(v)} \\
& \text { consistency }
\end{aligned}
$$

$f(u) \geq f(v) \longrightarrow \mathrm{f}$ is non-decreasing along any search trajectory

Hypotheses:

1. $A^{*}$ selects from the frontier a node $G$ that has been generated through a path $p$
2. p is not the optimal path to G

Given 2 and the frontier separation property, we know that there must exist a node $X$ on the frontier that is on a better path to $G$

f is non-decreasing: $f(G) \geq f(X)$
A* selected G: $f(G)<f(X)$
When $A^{*}$ selects a node for expansion, it discovers the optimal path to that node

## Evaluating heuristics

- How to evaluate if an heuristic is good?

$$
\begin{aligned}
& h(v)=0 \\
& \begin{array}{l}
\text { We'd like to push } \\
\text { Thivial } \\
\text { heuristic point to the } \\
\text { right. Why? }
\end{array}
\end{aligned}
$$

- A* will expand all nodes v such that: $f(v)<g^{*}($ goal $) \longrightarrow h(v)<g^{*}(g o a l)-g(v)$
- If, for any node $v h_{1}(v) \leq h_{2}(v)$ then $A^{*}$ with $h_{2}$ will not expand more nodes than $A^{*}$ with $h_{1}$, in general $h_{2}$ is better (provided that is consistent and can be computed by an efficient algorithm)
- If we have two consistent heuristics $h_{1}$ and $h_{2}$ we can define $h_{3}(v)=\max \left\{h_{2}(v), h_{1}(v)\right\}$


## Building good heuristics

- The "larger heuristics are better" principle is not a methodology to define a good heuristic
- Such a task, seems to be rather complex: heuristics deeply leverage the inner structure of a problem and have to satisfy a number of constraints (admissibility, consistency, efficiency) whose guarantee is not straightforward
- When we adopted the straight-line distance in our route finding examples, we were sure it was a good heuristic
- Would it be possible to generalize what we did with the straight-line distance to define a method to compute heuristics for a problem?
- Good news: the answer is yes


## Relaxed problems

- Given a problem $P$, a relaxation of $P$ is an easier version of $P$ where some constraints have been dropped

| $P$ | $\hat{P}$ |
| :---: | :---: |
| Original <br> problem$\xrightarrow{\text { Removing constraints }}$Relaxed <br> problem |  |



- In our route finding problems removing the constraint that movements should be over roads (links) means that some costs pass from an infinite value to a finite one (the straight-line distance)


## Relaxed problems

- Idea:

- We can easily define a problem relaxation, it's just matter of removing constraints/rewriting costs
- But what happens to soundness and completeness of A*?
$\hat{h}^{*}(v) \leq \hat{g}(v, u)+\hat{h}^{*}(u)$ Path costs are optimal
$h(v) \leq \hat{g}(v, u)+h(u) \quad$ From our idea
$\hat{g}(v, u) \leq g(v, u) \quad$ From the definition of relaxation
$h(v) \leq g(v, u)+h(u) \quad \mathbf{h}$ is consistent


## Sistemi Intelligenti

Corso di Laurea in Informatica, A.A. 2019-2020
Università degli Studi di Milano

## Nicola Basilico

Dipartimento di Informatica
Via Celoria 18-20133 Milano (MI)
Ufficio 4008
nicola.basilico@unimi.it
+39 02.503.16289

