## Sistemi Intelligenti

Corso di Laurea in Informatica, A.A. 2019-2020
Università degli Studi di Milan

## (5) <br> Search algorithms for planning

Nicola Basilico<br>Dipartimento di Informatica<br>Via Celoria 18-20133 Milano (MI)<br>Ufficio 4008<br>nicola.basilico@unimi.it<br>+39 02.503.16289

## State-based problem formulation

- (Single agent: the automated problem solver)
- State space defined as a set of nodes, each node represents a state; we assume a finite state space
- For each state, we have set of actions that can be undertaken by the agent from that state
- Transition model: given a starting state and an action, indicates an arrival state (here we assume no uncertainties, i.e., deterministic transitions and full observability)
- Action costs: any transition has a cost, which we assume to be greater than a positive constant (reasonable assumption, useful for deriving some properties of the algorithms we discuss)
- Initial state


Compact representation: state transition graph $G=(V, E)$ (We will use "state" and "node" as interchangeable terms)

## Formally describing the desired solution

- In the problem formulation we need to formally describe the features of the solution we seek
- Two (three) classes of problems:

is there a path to an exit?


If at least a path to an exit exists, what is the one with the minimum number of turns?

Set of goal states, find the sequence of actions (path) from the initial state to a goal state that has the minimum cost

## Problem example

Consider a mobile robot moving on a graph-represented environment:

- States: nodes of the graph, they represent physical locations
- Edges: represent connections between nearby locations or, equivalently, movement actions
- Initial state: some starting location for the robot

Desired solution:

- Goal state(s): some location(s) to reach, e.g., recharging station, parking depot...
- Find a path to the initial location to a goal one


## Problem example

## EXPO

## MILANO 2015

FEEDING THE PLAN


## Problem example

## EXPO

$\frac{\text { MILANO } 2015}{\text { FEEDING THE PLANE }}$


## Problem example



## Problem specification

- How to specify a planning problem?
- First approach: provide the full state transition graph G (as in the previous example)
- Most of the times this is not an affordable option due to the combinatorial nature of the state space:

- Chess board: approx. $10^{47}$ states
- We can specify the initial state and the transition function in some compact form (e.g., set of rules to generate next states)

- We need an efficient procedure for goal checking


## General features of search algorithms

A search algorithm explores the state-transition graph graph $G$ until it discovers the desired solution

- In feasibility: when a goal node is visited the path that led to that node is returned
- In optimality: when a goal node is visited, if any other possible path to that node has higher cost the path that led to that node is returned


It does not suffice to visit a goal node, the algorithm has to reconstruct the path it followed to get there: it must keep a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

## how to evaluate a (search) algorithm?

- We can evaluate a search algorithm along different dimensions
- Sound?
- Complete? (Systematic?)
- Space complexity?
- Time complexity?
(The above criteria can actually be used to evaluate a broader class of algorithms)


## Soundness

- If the algorithm returns a solution, is it compliant with the desired features specified in the problem formulation?
- Example:
- In feasibility: does the returned solution lead to a goal?
- In optimality: does the returned solution lead to a goal with minimum cost?


## Completeness and the systematic property

- If a solution exists, does the algorithm find it?
- Example:
- In feasibility: does it always find a path to the goal when it exists?
- In optimality: does it always find the path to the goal that has minimum cost when at least one exists?
- Typically shown by proving that the search will/will not visit all states if given enough time
- If the state space is infinite, we can ask if the search is systematic:
- if the answer is "yes" the algorithm must terminate
- if the answer is "no", it's ok if it does not terminate but ...
- ... all reachable states must be visited in the limit: as time goes to infinity, all states are visited (this definition is sound under the assumption of countable state space)


## Visual example



## Visual example



- Searching along multiple trajectories (either concurrently or not), eventually covers all the reachable space


## Visual example



- Searching along a single trajectory, eventually gets stuck in a dead end


## Space and time complexity

- Space complexity: how does the amount of memory required by the search algorithm grows as a function of the problem's dimension (worst case)?
- Time complexity: how does the time required by the search algorithm grows as a function of the problem's dimension (worst case)?

- Asymptotic trend:
- We measure complexity with a function $f(n)$ of the input size
- For analysis purposes, the "Big O" notation is convenient:

A function $f(n)$ is $O(g(n))$ if $\exists k>0, n_{0}$ such that $f(n) \leq k g(n)$ for $n>n_{0}$

- An algorithm that is $O\left(n^{2}\right)$ is better than one that is $O\left(n^{5}\right)$
- If $g(n)$ is an exponential, the algorithm is not efficient


## Running example

- To present the various search algorithms, we will use this problem instance as our running example


Desired solution: any path to goal state E

- It might be useful to think it as a map, but keep in mind that this interpretation does not hold for every instance


## Search algorithm definition

- The different search algorithms are substantially characterized by the answer they provide to the following question:

- The answer is encoded in a set of rules that drives the search and define its type, let's start with the simplest one


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- We are avoiding loops on the same branch (loops are redundant paths)
- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions


## Depth-First Search (DFS)



- A Depth-First Search (DFS) chooses the deepest node in the search tree (How to break ties? For now lexicographic order)
- We are avoiding loops on the same branch (loops are redundant paths)

- A dead end stopped the search, DFS seems not complete. Can we fix this?
- Let's endow our DFS with backtracking: a way to reconsider previously evaluated decisions

Solution: (A->B->D->F->G->E)

## Depth-First Search (DFS)

- DFS with loops removal and BT is sound and complete
- Call $b$ the maximum branching factor, i.e., the maximum number of actions available in a state
- Call $d$ the maximum depth of a solution, i.e., the maximum number of actions in a path
- Space complexity: $O(d)$
- Time complexity: $1+b+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$


## Breadth-First Search (BFS)



Solution: (A->F->G->E)

## Breadth-First Search (BFS)




Solution: (A->F->G->E)

- A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level by level fashion
- It has a more conservative behavior and does not need to reconsider decisions
- Call $q$ the depth of the shallowest solution (in general $q \leq d$ )
- Space complexity: $O\left(b^{q}\right)$
- Time complexity: $O\left(b^{q}\right)$


## Redundant paths

- Both DFS and BFS visited some nodes multiple times (avoiding loops prevents this to happen only within the same branch)
- In general, this does not seem very efficient. Why?

- Idea: discard a newly generated node if already present somewhere on the tree, we can do this with an enqueued list


## DFS with Enqueued List



## DFS with Enqueued List



## DFS with Enqueued List



## DFS with Enqueued List



## DFS with Enqueued List



## DFS with Enqueued List



- Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree



## DFS with Enqueued List



- Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree



## DFS with Enqueued List



- Node F ha already been "enqueued" on the tree, by discarding it we prune a branch of the tree


© E


## BFS with Enqueued List



## Implementation

- The implementation of the previous algorithms is based on two data structures:
- A queue $\mathbf{F}$ (Frontier), elements ordered by priority, a selection consumes the element with highest priority
- A list EL (Enqueued List, nodes that have already been put on the tree)
- The frontier F contains the terminal nodes of all the paths currently under exploration on the tree

- The frontier separates the explored part of the state space from the unexplored part
- In order to reach a state that we still did not searched, we need to pass from the frontier (separation property)


## Implementation



## Informed vs non-informed search

- Besides its own rules, any search algorithm decides where to search next by leveraging some knowledge
- Non-informed search uses only knowledge specified at problem-definition time (e.g., goal and start nodes, edge costs), just like we saw in the previous examples
- An informed search might go beyond such knowledge
- Idea: using an estimate of how far a given node is from the goal
- Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal: $h(v)$

## Informed vs non-informed search

- We can enrich DFS and BFS to obtain their an informed versions
- Both search methods break ties in lexicographical order, but it seems reasonable to do that in favor of nodes that are believed to be closer to the goal
- Hill climbing
- A DFS where ties are broken in favor the node with smallest $h$
- Beam (of width w)
- A BFS where at each level we keep the first $w$ nodes in increasing order of $h$


## Search for the optimal solution

- Now we assume to be interested in the solution with minimum cost (not just any path to the goal, but the cheapest possible)
- To devise an optimal search algorithm we take the moves from BFS. Why it seems reasonable to do that?
- We generalize the idea of BFS to that of Uniform Cost Search (UCS)
- BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs are all equal to some constant BFS and UCS coincide)
- Cost accumulated on a path from the start node to v: $g(v)$ (we should include a dependency on the path, but it will always be clear from the context)
- For now let's remove the enqueued list and the goal checking as we know it


## Uniform Cost Search (UCS)



## Uniform Cost Search (UCS)



0 A

## Uniform Cost Search (UCS)



- Have we found the optimal path to the goal? In this problem instance, we can answer yes by inspecting the graph
- How about larger instances? Can we prove optimality?
- Actually, we can prove a stronger claim: every time UCS selects for the first time a node for expansion, the associated path leading to that node has minimum cost


## Optimality of UCS

Hypotheses:

1. UCS selects from the frontier a node $V$ that has been generated through a path $p$
2. p is not the optimal path to V

Given 2 and the frontier separation property, we know that there must exist a node $X$ on the frontier, generated through a path $\mathrm{p}_{1}$ that is on the optimal path $\mathrm{p}^{\prime} \neq \mathrm{p}$ to V ; let assume $\mathrm{p}^{\prime}=\mathrm{p}_{1}^{\prime}+\mathrm{p}_{2}$

$c\left(p^{\prime}\right)=c\left(p_{1}^{\prime}\right)+c\left(p_{2}^{\prime}\right)<c(p)$ since, from $\mathrm{Hp}, \mathrm{p}^{\prime}$ is optimal $c\left(p_{1}^{\prime}\right)<c\left(p_{1}^{\prime}\right)+c\left(p_{2}^{\prime}\right)<c(p)$ since costs are positive $c\left(p_{1}^{\prime}\right)<c(p) \quad \mathrm{X}$ would have been chosen before V , then 1 is false

## Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to select the same node a second time: extended list

Every time we select a node for extension:

- If the node is already in the extended list we discard it
- Otherwise we extend it and we put it the extended list
- (Warning: we are not using an enqueued list, it would actually make the search not sound!)


## Sistemi Intelligenti

Corso di Laurea in Informatica, A.A. 2019-2020
Università degli Studi di Milano

## Nicola Basilico

Dipartimento di Informatica
Via Celoria 18-20133 Milano (MI)
Ufficio 4008
nicola.basilico@unimi.it
+39 02.503.16289

