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A simple example: turtlesim



TurtleSIM

Simulation tutorial of ROS:

• 2D world simulation

• a “turtle” “robot”

• can receive commands and 
move around

Easy to understand ROS topics 
and messages + command line 
tools



TurtleSIM

1. install ROS

2. install turtlesim

3. launch roscore on a terminal

4. run turtlesim node
on another terminal

This will open the simulator.

$ sudo apt-get install ros-$(rosversion -d)-turtlesim

$ rosrun turtlesim turtlesim_node



Turtlesim
4. launch teleoperation node

on another terminal

5. move around the turtle with 
keys

6. open rqt_graph
on another terminal

$ rosrun turtlesim turtle_teleop_key



Turtlesim

cmd_vel is the standard topic for  sending velocity commands

RQT_graph shows the 
computational graph,
Nodes and topics



Command
Line
Tools

cmd_vel is the standard topic for  sending velocity commands

Rostopic list shows all active
topics. 
• cmd_vel is the velocity
• pose is the (x,y) position

$ rostopic list
/rosout
/rosout_agg
/turtle1/cmd_vel
/turtle1/color_sensor
/turtle1/pose



cmd_vel is the standard topic for  sending velocity commands

Rostopic echo listens and streams 
all messages of a given topic:

publishes the result of teleop

$ rostopic echo /turtle1/pose
x: 5.35244464874
y: 5.544444561
theta: 0.0
linear_velocity: 0.0
angular_velocity: 0.0
~ omitted ~

$ rostopic echo 
/turtle1/cmd_vel

Command 
Line
Tools



cmd_vel is the standard topic for  sending velocity commands

rostopic pub allows to publish a 
message on a topic manually

$ rostopic pub -1 
/turtle1/cmd_vel
geometry_msgs/Twist -- '[2.0, 
0.0, 0.0]' '[0.0, 0.0, 1.8]'
publishing and latching 
message for 3.0 seconds

Command 
Line
Tools



$ rostopic pub -1 
/turtle1/cmd_vel
geometry_msgs/Twist -- '[2.0, 
0.0, 0.0]' '[0.0, 0.0, 1.8]'
publishing and latching 
message for 3.0 seconds

$ rostopic echo /turtle1/pose
x: 5.35244464874
y: 5.544444561
theta: 0.0
linear_velocity: 0.0
angular_velocity: 0.0
~ omitted ~

$ rostopic list
/rosout
/rosout_agg
/turtle1/cmd_vel
/turtle1/color_sensor
/turtle1/pose

One of the (most) useful feature of ROS are 
command line tools.

Command line tools allows the inspection of 
communication between nodes, to see if naming of 
topics and nodes is properly set, and to manually 
trigger messages. 

ROS command line tools are designed not to write 
all commands directly but to let ROS autocomplete 
them with the Tab button.

Structure of messages, packages and topic names 
are automatically autocompleted by ROS –
facilitating development and preventing erros.

Moreover, if ROS cannot autocomplete a message 
it usually indicates that something is going wrong 
with such topic/node/message



Turtlesim and services

Turtlesim offers also some services – e.g. in this case changing the color of the robot trajectory

Rosservice call is the command used for triggering manually a ROS service 
(also here, let ROS to autocomplete the call to service for you)

$ rosservice call /turtle1/set_pen 255 0 0 5 0

$ rosservice list 

$ rosservice args /turtle1/set_pen
r g b width off



Turtlesim and params

Try to run “rosparam get” and “rosparam set” and let ROS to 
autocomplete (tab)

Rosparam is the command line 
tool for accessing all param of the 
parameter service. 
Turtlesim has background colors 
as params

$ rosparam list
/background_b
/background_g
/background_r
/rosdistro
/roslaunch/uris/host_192_168_
1_100__39536
/rosversion
/run_id

$ rosparam set background_b 0
$ rosservice call clear



Turtlesim and rosbags
$ rosbag record /turtle1/cmd_vel

[INFO] [1499663788.499650818]: Subscribing to /turtle1/cmd_vel

[INFO] [1499663788.502937962]: Recording to 2017-07-10-14-16-28.bag.

$ rosbag play 2017-07-10-14-16-28.bag

[INFO] [1499664453.406867251]: Opening 2017-07-10-14-16-28.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

[RUNNING] Bag Time: 1499663790.357031 Duration: 0.000000 / 17.419737

~ omitted ~.

saves messages of /turtle1/cmd_vel into a bag

Replays the same bag and publish
on /turtle1/cmd_vel



Autonomous navigation with



Robot Navigation

Navigation is the ability to 
determine the position of the 
robot and to plan a path 
towards a goal location.

Navigation is a core capability 
of autonomous mobile robots, 
but is also dependent on 
several complex and stacked 
behaviors.



ROS and navigation

• how navigation is done is based on sensors mounted on the 
robot

• navigation sub-tasks depend on which is the goal of the 
robot (USAR, service robot, teaching, …)
(e.g. a robot working in close contact with humans, should take that into
account)

ROS provides support in both directions:

• integration and drivers for sensors

• ready to use modules



Today’s talk

• Overview of robot sensors

• Overview of what are the sub-tasks that the robot 
has to perform for navigation

• How to use all of this in ROS with the ROS 
Navigation Stack – wheeled ground robots



Robot and sensors



Robot Sensors
• sensors are the main and primarily 

source of knowledge of a mobile 
robot

• sensors are noisy, inaccurate

• some of these inaccuracies can be 
modeled, some not

• sensors are raw data and do not 
have any semantic 
• humans can interpret the data

(we have semantic knowledge)
• robot can’t (unless you implement it)



Sensors

• proprioceptive – info about the robot internal state
• speed

• battery

• encoders

• exteroceptive – info about the world
• vision 

• 2D/3D

• olfaction

• chemicals

• active and passive (e.g. sonars and microphones)



Proprioceptive sensors

• wheel encoders 

• IMU
• accellerometers

• gyros

Integration of proprioceptive sensor data are used for open-
loop estimation of the robot state. 

Errors in sensors are integrated too so the estimate state gets 
less and less accurate with operational time



Odometry
Odometry is the use of data from motion sensors to estimate 
change in position over time, to estimate the robot position 
relative to a starting location.

It could be used open-loop to estimate the robot position, but
needs integration.

Rotational movements are fare more difficult to measure than 
translational ones.



Odometry

Sometimes odometry is so 
noisy that is reconstructed
from exteroceptive sensors

From https://doi.org/10.1109/TRO.2018.2861911



Excteroceptive sensors (for navigation)

• laser rangescanner (LIDAR)
2D and 3D velodyne

• camera (stereo – mono) 

• RGBD camera

• sonars

• …



2D lidar 

• (probably the most used sensors in robotics)

• 2D representation of the environment

• highly reliable

• widely adopted and used also on commercial platforms

• measure time of flight of laser beam



2D lidar specs

• usable range 3-5m (indoor) 30-50m (outdoor)

• 1hz – 50hz 

• relatively cheap (0.5k – 15k) 
(1k for a good indoor one,10k for a «good one»)

• Wide FOV (180° → 360°)

• Security for collision detection

• not subject to environmental changes (e.g. day/light)



• reliable

• cheap

• easy to use and to process

• robust to changes in the environment and to light changes

• large FOV

• long range

• outdoor and indoor

• useful for mapping, localization and path planning

2D LIDAR PROs



2D LIDAR CONs

• not that much info (2D)

• difficult to add semantic
knowledge
(only occupancy)

• reflections / mirrors are a problem

• planar – only object at a given
height can be perceived 
(e.g. chairs, tables are not visible)

• not suited for UAV (drones)
or in general to non-wheeled
mobile robots

This does not exists! 
It’s a mirror

These are two 
chairs and a 
table



3D LIDAR  - velodyne

• multi-layer lidar

• highly reliable

• 3D representation of 
the environment

• wide range of 
application
(autonomous cars)

• semantic knowledge 
can be added

• used mostly
outdoor



3D LIDARs

• Usually 360° and higher range than 2D LIDAR 

• thicker representation close to the source and
coarser w.r.t the distance 
(all planar scans start from the same point)

• not subject to lighting condition changes (e.g. night)

• very expensive (10k-100k)

• most indoor application are still based on a 2D map

Currently, 2D lidars are preferred to 3D ones only for their 
price



Cameras (monocular)

• perceive lots of data

• easy to add semantic knowledge 
(e.g. object recognition, people detection, classification…)

• cheap (10$ → 10k)

• no depth info

• limited range + distortion

• difficult to be used to build a map of the environment

• subject to light changes / day-night changes, …



Camera (stereo)

• 2x monocular camera

• allow triangulation –
can be used to do 3d reconstruction

• estimation error grows with distance

• sparse 3D representation

• same PROs and CONs of monocular camera
(more PROs, but also you need calibration)



RGBD Camera
• camera + depth information using an active sensor

• easier to reconstruct 3D image of the environment

• good for a lot of sensing tasks (e.g. human detection)

• widely used and useful, especially indoor

• limited range (useless at 3/5m, some even before)

• distortion 

• very cheap (100$→1000$)



What sensors for navigation?

• 2D lidars provide cheap, reliable, long-range 
knowledge of the environment but…

• …are planar and little to none semantic 
knowledge

• cameras (RBGD) have limited range and are 
noisy and subject to light changes, but…

• … provide a lot of data

Why not use both together?
Strands Scitos G5

2D LIDAR (SICK LMS)
2x RBGD CAMERA



Our Giraff robot

• 2D lidar at the bottom for 
mapping and navigation

• an RBGD camera (Orbbec ASTRA)
at the top, pointing downwards
for detecting obstacles (tables)
and help navigation

• another RGBD camera on the 
neck pointing upwards for 
people/object detection



From sensors to navigation

for moving autonomously the robot should be able to
understand the environment from its sensor measurement

mapping

path planning

localization

SLAM

exploration

From [Grisetti, Burgard, Stachniss]



What is needed for navigation?
• sensors measurement → what I can see?

• map → what is the environment?

• localization → where am I?

• path planning → how I go there?

Besides this, there are many other subtasks: 
mapping (creation of the map) is the most important one.

Note that we are not considering who is deciding where and 
how the robot should go (reasoning)



Map 

• a map is a representation of the environment 
where the robot is operating

• Metric map

• 2D or 3D

• grid map

• feature based

• landmark-base

• Topological map

• hybrid maps

More maps could be used at the same time by a 
robot



Topological and hybrid maps

Topological maps are an abstract graph 
representation of the environment, which 
could be used jointly with the metric map.

From Krajnik et al, T-RO, 2017



Localization

• the robot should know its 
position 
(a pose, in 2D is a <x,y,theta>
vector)
in the map (reference frame)

• when the robot move the
position is updated according
to the measurements
performed from start till the
current (latest) sensor
measurement



AMCL

• a method widely used is Adaptive Monte Carlo 
Localization (AMCL)

• available in ROS and deault localization method in the 
navigation stack
(more later)

• particle-based (several estimated location are 
maintained and updated together, the more the “cloud” 
of particles is thick, the more precise is the localization



Mapping

Given the robot position, a sequence of measurements (and 
the position from which those measurements have been 

performed), build the map of the environment

How to know the robot position in the map, if I have no map?

We need to solve a bigger problem



SLAM: Simoultaneous Localization and 
Mapping
Estimate:

• the map of the environment

• the trajectory of a moving device

using a sequence of sensor measurements

SLAM is one of the core problems in robotics, widely studied
and hundreds of solutions proposed during 20+ years



SLAM: Simoultaneous Localization and 
Mapping
SLAM approaches can be different w.r.t the type of the robot:

• indoor 

• outdoor

• marine (water-surface or submarine)

• underground

• …

The type of map built (2D/3D) and the type of sensors used for 
mapping (2D/3D lidars, vision, sonars, …)



2D SLAM
• used for indoor environments 

• 2D grid maps

• robust 

• available and ready-to-use 
solutions

• 2D lidar as source (cheap and 
reliable)

• most algorithms (e.g. planning) 
assume are designed for 
working with such 
representation

• most methods are based on 
Filters
Kalman filter, EKF, particle filter, 
…



2D SLAM in ROS

• several available methods – widely used, tested and robust

• need parameter configuration, but it is not that hard + docs

• Gmapping [Grisetti et al, T-RO, 2009] and Hector SLAM are the most 
popular ones

• work reasonably well with a lot of different robot
platform/settings, are robust to changes and clutter (noise in 
sensors and furniture, …), complex and large-scale 
environments, …

http://wiki.ros.org/gmapping
http://wiki.ros.org/hector_slam

http://wiki.ros.org/gmapping
http://wiki.ros.org/hector_slam


2D SLAM

• SLAM is the process used for building the map

• you start assuming no-knowledge of the environment and the 
map is built incrementally

• in most setting you can map the environment once and use the 
map later for future uses

• assumption: the environment is static (open/closed doors)

• dynamic changes (e.g. people) can be filtered out (while mapping) 
and are not present when a static map is used…

• …low-freq dynamic changing (e.g. doors) and static changing 
could jeopardize robot localization and navigation → redo 
mapping or use dynamic mapping mechanisms



ROS Navigation stack
• assumptions: you have selected a set of sensors, the robot 

architecture, and you have chosen your favorite localization 
algorithm (AMCL default) and have a map

• map can be given (so you use a previously acquired map) or
being built incrementally (SLAM)

• ROS navigation stack handles this setting and allows path 
planning: finding if exists a list of robot positions that, if 
followed, allows the robot to reach its goal

• also, it allows the execution of this path

• the core of the method is called move_base



ROS Navigation Stack



Costmaps
• the metric map is 

inflated according
to the robot 
structure so the 
robot can perform 
a safe navigation

• in this way simpler paths in open areas are preferred to “costly” 
paths (close to obstacle or doors) where the robot may get stuck

• several methods to do so (e.g. robot footprint, inflate obstacles)



Costmaps
• the metric map is 

inflated according
to the robot 
structure so the 
robot can perform 
a safe navigation

• in this way simpler paths in open areas are preferred to “costly” 
paths (close to obstacle or doors) where the robot may get stuck

• several methods to do so (e.g. robot footprint, inflate obstacles)



Deal with uncertainties and dynamics

The robot plans its path in the static map but
• changes usually happens (doors open/close)

• new obstacles may appear (people, animals, children)

• the robot movements execution are very different w.r.t. the initial 
goal

• …

Solution: complement the (ideal) map with local information 
coming for sensors that address such issues

• obstacle avoidance

• local map refinement based on recent sensor readings



ROS Navigation Stack



Global and local planner

• global plan → identifies the long-term path that eventually will 
lead the robot to the goal
works at low frequency, using 2D lidar data

• global costmap→ used for path planning, based on the static 
metric map

• local plan → identify the next moves that the robot has to
perform in order to follow the global path 
works at high frequency

• local costmap→ centered on the robot, integrates all of the 
sensors of the robot (2D lidar, RGBD data, bumpers) that are 
needed to constantly adapt the local plan



Global planner and costmaps

• implements several planning algorithms, use the one you 
want and that is most suited for your application

• costmaps also can be tuned in several ways according to
your robot configuration

• you can visualize with RViz the path decided by the robot

• the global path could become outdated – replanning is also 
used 



Global Planner

A* Potential



ROS Navigation Stack



DWA Local planner

The local planner package provides a 
controller that drives a mobile base in 
the plane and connect the path planner 
to the robot. 
Using a map, the planner creates a 
kinematic trajectory for the robot to get 
from a start to a goal location. Along 
the way, the planner creates, at least 
locally around the robot, a value 
function, represented as a grid map. 
This value function encodes the costs 
of traversing through the grid cells. The 
controller's job is to use this value 
function to determine dx,dy,dtheta
velocities to send to the robot.



DWA Local Planner

Dynamic Window Approach to local robot navigation on a plane. Given a global plan to 
follow and a costmap, the local planner produces velocity commands to send to a 
mobile base. 

The basic idea of the Dynamic Window Approach (DWA) algorithm is as follows:

• discretely sample in the robot's control space (dx,dy,dtheta)

• for each sampled velocity, perform forward simulation from the robot's current state 
to predict what would happen if the sampled velocity were applied for some (short) 
period of time.

• evaluate (score) each trajectory resulting from the forward simulation, using a metric 
that incorporates characteristics such as: proximity to obstacles, proximity to the 
goal, proximity to the global path, and speed. Discard illegal trajectories (those that 
collide with obstacles).

• pick the highest-scoring trajectory and send the associated velocity to the mobile 
base.

• rinse and repeat.



Handling failures

• despite the integration of local and global plan execution, the 
robot may get stuck → is not able to move and continue to 
execute its path

• this happens often in narrow passages (doorways), when a lot of 
rotations are involved, or with dynamic obstacles (people, is too 
close to an obstacle to safely move)

• the robot should be provided with mechanism to solve 
autonomously such issue and to restart following its path

• otherwise, a human intervention is needed

The navigation stack gives you a set of behavior for this



Recovery Behaviors

Recovery behaviors are executed when the robot is stuck or cannot proceed to
the goal (cannot execute the path or cannot compute the path). 
They try to free the robot from a dangerous position (e.g. too close to an 
obstacle) or to “clear” the costmaps (e.g. a noisy reading, a user was in front of 
the robot, an obstacle that was there and it is not there anymore)



An example of global and local 
costmaps + AMCL 



An example of navigation stack in use 

Our Giraff robot intended to work inside 
houses, so with dynamic environment, people, 
and clutter

• gmapping for creating a (static) map

• AMCL for localization

• navigation Stack + custom-built packages for
more robust navigation



An example of navigation stack in use 

• the global costmap (and the map) is built 
using a 2D lidar 20cm from the ground

• the local costmap is integrated with 
depth sensor info projected at the 2D plane 
from 2 RBGD cameras, one pointing on the 
ground, the other one front-facing 

• In this way the robot can detect people,
tables, chairs, …



An example of navigation 
stack in use 
The local costmap is centered around 
the robot pose and integrates the 
sensors coming from the 2D lidar and 
from the RBGD cameras.

A person is in front of the robot that,

consequently, cannot move.



ROS Navigation wrap up

All the required modules for 
having a robot moving 
autonomously are available 
and ready-to use in ROS. 

You just need to:

• select sensors and a robot

• pick up a SLAM algorithm and make a map

• use a localization mechanism

• use the navigation stack



ROS Navigation wrap up
You can use simulations and test everything you’ve seen by 
yourself in a couple of afternoons

RViz is very useful to test and understand what happens.



ROS navigation wrap up mapping

path planning

localization

SLAM

exploration

From [Grisetti, Burgard, Stachniss]

Remember that navigation is a
core behavior of the robot, on
top of which more complex
ones are built.

E.g. exploration is the task of building a map of an unknown
environment, making decision about the next position that has 
to be reached (next path planning goal).



Sources - References

• Wiki.ros.org

• ROS Robot Programming  
A Handbook Written by Turtlebot3 Developers 
(available at http://www.robotis.com/service/download.php?no=719)

• Robotis Turtlebot3 documentation
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/

• Jason O’Kane, A Gentle Introduction to ROS
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

http://www.robotis.com/service/download.php?no=719
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf


Sources - References on navigation

ROS wiki navigation stack home page, with a lot of tutorials
and documentation

• http://wiki.ros.org/navigation

• http://wiki.ros.org/navigation#Tutorials

• http://wiki.ros.org/navigation/Tutorials/Using%20rviz%20wit
h%20the%20Navigation%20Stack

http://wiki.ros.org/navigation
http://wiki.ros.org/navigation#Tutorials
http://wiki.ros.org/navigation/Tutorials/Using rviz with the Navigation Stack


Next lesson

Mercoledì 30/10 non ci sarà lezione

In alternativa, abbiamo organizzato una demo in cui potrete 
provare quanto visto in questi ultimi due seminari dal vivo, 
usando i nostri turtlebot3. simulazione + robot 



Next lesson

Dove: AisLab

Dipartimento di Informatica (Via Celoria 18) 
IV piano – telefono 16328

Quando: Mercoledì 30/10, 9:00 → 10:30

Se siete interessati a partecipare, per questioni di capienza,
segnalatelo sul doodle.
https://doodle.com/poll/rmm5upk6dzqcr5dk
indicate nel nome la vostra mail – nel caso foste tanti vi 
divideremo in slot orari.

https://doodle.com/poll/rmm5upk6dzqcr5dk

