An introduction to

matteo.luperto at unimi.it

:::ROS

ROS: the Robot Operating System

ROS is an open-source, meta-operating system
for your robot. It provides the services you
would expect from an operating system,
including hardware abstraction, low-level
device control, implementation of commonly-
used functionality, message-passing between
processes, and package management. It also
provides tools and libraries for obtaining,
building, writing, and running code across
multiple computers. [wiki.ros.org]

Robot software architecture

Low level functionalities as real-time
motor controllers, sensors drivers,
battery management

-+

Core functionalities as mapping,
localization, navigation, people
detection

Reasoning mechanism for path
planning, task allocation, self
management

Robot software architecture

The development of (even a single)
robots (functionality) requires both low-
level hardware related and high-level Al-

based mechanism

Modularity and scalability are
consequently core features in a robot
software architecture

ROS provide this

ROS has established itself as the de-
facto standard for robot development

ros.org

robots

|

o e

Our ROS robots

EEE ROS SenSOrS Wlth ROS [wiki.ros.org]

What is ROS?

Is a Meta-Operating System

« Scheduling - loading - monitoring, and error handling
« virtualization layer between applications and distributing computing resources
« runs on top of (multiple) operating system(s)

e is a framework
 not a real-time framework but embed real-time code
« enforce supports a modular software architecture

:::ROS

ROS SW architecture

» distributed framework of processes (Nodes)

» enables executables to be individually designed and loosely
coupled at runtime.

* processes can be easily shared and distributed.

 supports a federated system of code Repositories that enable
collaboration to be distributed as well.

This design, from the filesystem level to the community level,
enables independent decisions about development and

implementation, but all can be brought together with ROS
infrastructure tools.

ROS

More ROS features

e thin: ROS is designed to be as thin as possible
 easy to integrate with other frameworks and libraries

 language independence
core languages are Python and C++ but you can use what you want

e easy testing: built in unit/integration test framework and
debug tool

e scaling: ROS tools can be distributed across different
machines and is appropriate for large development process

The core idea behind all of this is: code reuse + modularity

:::ROS

What ROS provides

« core and advanced robot

E;ljg: [roscpp] [rospy } [roslisp] [rosjava } [roslibjs } fu n Cti O n a | iti e S
(mapping, localization,
ROb Oti cs [Movelt!] [navigatioin J [executive smach] [descartes J [rospeex } . .
e Lo navigation, obstacle
pp Ication teleop pkgs] [rocon] [mapviz J [people J [ar track J .
avoidance)
Rebiofics (dynamuc reconﬁgure] [robot localization] [robot pose ekf] [Industrial core] [robot web tools } ros realtime] [mavros] (] d rive rS a n d i nte g rati O n With
?ppllcatIOE { tf } [robot state publlsher] (robot model] [ros control \ [calibration J octomap mapping J Se n S O rS
r

LArORWD [vision opencv] [image pipeline] [laser pipeline] [perception pcl] [laser filters } ecto [I nteg ratl O n Wlth m u Itl p | e ro b Ot
CO mmu nicatio n common msgs] [rosbag] { actionlib] [pluginlib | [rostopic } { rosservice J ?JrAC\}}] Ite Ct u r'e S | h | d
Layer [rosnode] [roslaunch J [rosparam] [rosmaster J [rosout } { ros console] - m a n I p u ato rS _W e e e
Hardware (() robots
|nterface L camera drivers] [GPS/IMU drivers] L Jjoystick drivers] [range finder driversJ [3d sensor drivers } [(diagnostics] ° i nteg rati O n With | i b ra I’i eS
Layer [audio common] [s?;?g{‘g:g/:ss] [power supply drivers] [rosserial] [ethercat drivers J L ros canopen 1 (O p e n P O S e, O p e n CV’ d e e p
Software , , learning fw)

D | t iz rqt wstoo! rospack catkin (rosde | . N
e) = . A — * simulation tools
Simulation (gazebo ros pkgs] [stage ros]

All free and ready to use
Support from the community

:::ROS

ROS-community

o=
— O More than 5,000 packages .’:E = Tess -.:::: &..36
] 0 2,818 Official Packages (Indigo, March 2017) _.:_*_‘-“ W 5 L] o

Q0 13,441,711 .deb Packages Download (July 2017) e O f'_-

— O 18,839 Wiki page (July 2017) - W S g - ot

Developers, Users 2ae,

— O Applications fetch beer, elevator -+
Q Simulators gazebo, player/stage, STOR Simulator «*
Q Intelligent Modules navigation, action, grasping -
Q Libraries tf, PCL, OpenCV, OpenRave -
Q Device Drivers camera_drivers, urg_node -
O Debugging Tools rviz, rqt_graph, rosbag, rostopic -
O Message Passing rosmaster, rosmsg, rosservice -
O Execution Tools rosrun, roslaunch -
Q Compile Tools catkin_make, rosbuild -+
Q File Systems roscd, rosls -

ROBOT, SENSOR Q Installer rosinstall -
— O Programming Languages C++, Python, Lisp, Java, Ruby, MATLAB, etc
Robot, Sensor Manufacturer — O Supports more than 90 robots and 80 sensors
—

Caam) 494 mm,

Box Turtle C Turtle Diamondback Electric Emys Fuerte Turtle Groovy Galapagos Hydro Medusa Indigo Igloo

ROS 1.0 B £
([iemos
ROS
Switchyard :::Box Turtle
2007 2007.11 2010.01.22 2010.03.02 2010.08.02 2011.03.02 2011.08.30 2012.04.23 201212.31 2013.09.04 2014.07.22

Jade Turtle Kinetic Kame Lunar Loggerhead

2015.05.23 2016.05.23 2017.05.23

« 10y of ROS now
 last version: ROS Melodic (2019)
* next mayor release: ROS 2

ROS

Core aspects of

:::ROS

ROS aspects

e nodes

topics Building blocks of ROS
messages

services

actions Communication / SW architecture
transforms

« debugging Tools
e simulations
 bags

:::ROS

Developers tools

ROS nodes

A node is a process that performs
computation:

* nodes are combined together into a
graph and communicate with one
another using streaming topics, services,
and parameters,

e are meant to operate at a fine-grained
scale,

* a robot control system will usually
comprise many nodes.

ROS nodes

For example, one node controls a laser range-finder,
one Node controls the robot's wheels motors, one
node performs mapping, one localization, one node
performs path planning, one node gives velocity
commands to the wheels, one node provides a
graphical view of the system, and so on.

ROS nodes

The use of nodes in ROS provides several benefits to the
overall system.

e fault tolerance as crashes are isolated to individual nodes.

 code complexity is reduced in comparison to monolithic

systems. Implementation details are also well hidden - nodes
expose a minimal API -

* alternate implementations, even in other programming
languages, can easily be substituted.

:::ROS

Nodes and topics

odometry I slam_gmapping

Topics are named buses over (Jodometry {——»{ tf [Jslam_gmapping >t /map

which nodes exchange messages.
« topics have anonymous publish/subscribe semantics,
which decouples the production of information from its [ngkuyo_node

consumption.,
« nodes are not aware of who they are communicating

hdkuyo_node

—» /scan

with.

* nodes that are interested in data subscribe to the relevant
topic; nodes that generate data publish to the relevant
topic. nodes

« there can be multiple publishers and subscribers to a topics
topic.

:::ROS

ROS topics
and messages

geometry msgs/Point.msg

float64 x
float64 y
float6d 2z

sensor msgs/Image.msq

std_msgs/Header header
uint32 seq
time stamp
string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

geometry msqgs/PoseStamped.msq

std_msgs/Header header
uint32 seq
time stamp
string frame_id
geometry_msgs/Pose pose
s geometry msgs/Point position
float64 x
float6d y
float64 z
geometry msgs/Quaternion
orientation
float64 x
float6d y
float64 z
float64 w

 each topic is strongly typed by the ROS message type used to publish to it
« nodes can only receive messages with a matching type.
* type consistencK IS not enforced among the publishers, but subscribers

will not establis

message transport unless the types match.

« all ROS clients check to make sure that an MD5 computed from
the message format match.

:::ROS

ROS master

Master
Node Info

Node 1 Connection Info

Passing Messages
(Topic, Service, Action)

:::ROS

Node Info

Node 2

« the ROS Master provides naming
and registration services to the
rest of the nodes in the ROS
system.

e it tracks publishers and
subscribers to topics.

* it enables individual ROS nodes

to locate one another. Once
these nodes have located each
other they communicate with
each other peer-to-peer.

ROS master and nodes

« the ROS master is a process and it is
defined by its IP/port shared across all
Master nodes |
e acts as coordinator and manages the
communication among nods
XMLRPC: Server - this allows nodes to be distributed on
http://ROS_MASTER_URI:11311 different machines

Administrating Node Information :
(in the same network)

« this mechanism allowing to decouple
the execution of a process from the
machine where the process id

oo o distributed AT
eooo L

ROS master and nodes

« robots may have to perform several
e (computationally intensive)

tasks together

« hardware decoupling allows to
distribute such tasks on dedicated
hardware (e.g., Nvidia Jetson for GPUSs)

* moreover, robots are hardware and

this architecture allows to easily

interface control boards for sensors,

7 ¥ motors, etc.. (e.g., Arduino)

| Master § _

XMLRPC: Server
http://ROS_MASTER_URI:11311
v Administrating Node Information l

ROS on multiple platforms

@) 7\
ubuntu X El Capitan
, :2:R0OS.org :3:ROS.org \ oo
/ 1 g / I \ q - ARDUINO
ROROT ¥ SENSOR ROROT Y SENSOR ~:::R0OS.org
‘ t \cr:vucnr)
aNd=30ID 7 ‘
300 11 ROS.org ' os
— 1 ROS.org
W ,\1” 1 \CCV\ICF\h
b@t F mbed APP ‘
ubuntu eee
i1 ROS.org e . : ,
SN 1 '\mmm « as ROS is a middleware, computation can be

:::ROS

distributed across different OS
- however, this in practice is far than ideal
« OSindependence is de-facto provided for linux-
based and embedded systems.
rule-of-thumb: use Ubuntu (not all versions either!)

Set up a ROS topic publisher/subscriber

Subscriber Node Info:
fsubscriber_hode_name J a subscriber node registers to the
Master

topic_name,
hmr?ps:?fﬁ?gg?flgSTNAME:wad ROS MASTER
e and announces its
* Name
« Topic name
 Message Type
Node 2 e communication is performed using
XMLRPC

XMLRPC: Server
http://ROS_MASTER_URI: 11311
Administrating Node Information

XMLRPC: Client
http://ROS_HOSTNAME:1234
Subscribe Information

:::ROS

Set up a ROS topic publisher/subscriber

Publisher Node Info:
/publisher_node_name,

/topic_name,
message_type,
http:/ROS_HOSTNAME:5678

Subscriber Node Info

A publisher node
now registers to
the

ROS MASTER

XMLRPC: Server
http://ROS_MASTER_URI:11311
Administrating Node Information

XMLRPC: Client
http://ROS HOSTNAME:5678
Publish Information

:::ROS

Set up a ROS topic publisher/subscriber

Publisher Node Hﬁo”,~”:;h

| Node 1

:::ROS

~ Master &
“«_ESubscherruode Info

XMLRPC: Server

Publisher Node Info: o
/publisher_node_name, ’ 4B
/topic_name, &

message_type, ‘ i
Node 2

http://ROS_HOSTNAME:5678

XMLRPC: Client
http://ROS_HOSTNAME:1234
Subscribe Information

The ROS MASTER
distributes info
as all subscribers
that want to
connect to the
topic and to the
publisher node

Set up a ROS topic publisher/subscriber

Master)
The subscriber

node requests a
direct connection
to the published

Request TCPROS connection node and transmits

N 1 N p) e .
g ez its information to
the publisher node
XMLRPC: Server XMLRPC: Client
http://ROS HOSTNAME:5678 http://ROS HOSTNAME:1234
Publish Info

Subscribe Info

:::ROS

Set up a ROS topic publisher/subscriber

Master The publisher node
sends the URI
address and port
number of its TCP
server in response

Node 1)2 — | Node 2 to the connection
Response ICPROS gonector request
XMLRPC: Server XMLRPC: Client
http://ROS_HOSTNAME:5678 http://ROS_HOSTNAME:1234
Publish Info Subscribe Info

:::ROS

Set up a ROS topic publisher/subscriber

Master

TCPROS: Server
ROS HOSTNAME:3456
Publish Info

:::ROS

TCPROS Connection

TCPRQOS : Client
ROS _HOSTNAME:7890
Subscribe Info

At this point a
direct connection
between publisher
and subscriber
node is established
using TCPROS
(TCP/IP based
protocol)

Communication among nodes

After communication between
nodes is established, ROS
provides 3 types of
interactions

» Topics

« Services

« Actions

:::ROS

Message

(Topics, Services, Actions, Parameters)

Node 1

Parameters

Topic

Service Request

A

>

Service Response

Action Goal

\ 4

N

Action Feedback

Action Result

Yy Vv

P

Write Read

Node 2

Parameters

Communication among nodes

Topic
TCPROS: Server TCPROS : Client
ROS_HOSTNAME:3456 ROS HOSTNAME:7890
Publish Info Subscribe Info

The standard communication mechanism is using ROS topics.
Nodes can have multiple topics

Nodes can even use topics for internal communication
Continuos -loop()- or one-shot (e.g. when data are ready)

:::ROS

ROS Services

« RQOS services are

Request Service SynChFOHOUS
_ request from
Response to Service one node to
TCPROS: Server TCPROS : Cliennt another.
ROS_HOSTNAME:3456 ROS_HOSTNAME:7890 e Request/ Reply
Response to Service Request Service .
mechanism.

A client can make a persistent connection to a service, which enables higher performance at the
cost of less robustness to service provider changes.

:::ROS

ROS Actions

Action Goal

Action Status
Action Cancel
Action Feedback
Action Result

TCPROS: Server TCPROS : Client

ROS HOSTNAME:3456 ROS HOSTNAME:7890
Action Server Action Client

If the service takes a long time to execute, the user might want
the ability to cancel the request during execution or get periodic
feedback about how the request is progressing.

Action Services are for these tasks.

:::ROS

ROS services are
asynchronous
request from
one node to
another.
Request/Reply
mechanism, with
feedbacks and
the possibility to
cancel the
request.

ROS parameter server

The parameter server is a shared,
multi-variate dictionary that is
accessible via network APIs.

* nodes use this server to store
and retrieve parameters at
runtime.

« used for static, non-binary data
such as configuration
parameters.

- globally viewable so that tools
can easily inspect the
configuration state of the system Example of params are map
and modify if necessary. size/resolution and sensor

configuration/settings.
(XX
:::ROS
e0eo

ROS Transforms

e in robotics programming, the robot’s joints, or wheels with
rotating axes, and the position of each robot through
coordinate transformation are very important

* in ROS, this is represented by TF (transforms)

» TF are published with a mechanism
similar to (and parallel) the one
used for ROS Topics

HORULF
eoo 31
CYAI S &
& =7,
(XX @ A &
=t I /5
eo0o Uy
Y\ 09

ROS
Transforms

« all components of the
robots should be
connected through a chain
of TF to a global reference
frame (world or map)

» this is particularly
important, as TFs allow the
robot to project sensors
onto a global reference
frames

:::ROS

base stabilized

base_link
\ laser_link

A

@)

. >

base footprint

ROS

Transforms

e some TF are static (e.g., the
osition of sensors w.r.t.

he ro

not reference frame)

e some TF are dynamic and
are computed real-time by

nodes

(e.g. the position of the

robot |

n the map, the

position of joints in a hand
gripper)

:::RO

S

2D Hae Gon

® Fublsrpant 2 =

whe=, -,

C
bag\?hep._ &

K

¢ link
A link

gdag

ROS Transforms

* TF can become complex,
especially for robot with a
lot of Degrees Of Freedom
(DOF) as grippers

« ROS provides visualization
tools for controlling such
aspects

:::ROS

Developing toos

:::ROS

Developing a robot in ROS

* mobile robots easily became
very complex objects

e [Ssues can emerge with single
components, hardware failures,
integration, ...

 impossible to control all
possible sources of uncertainty

:::ROS

Environmental inaccuracies

* All of the robot available
knowledge is based on sensors
but...

e ...Sensors itself are (very) noisy

- odometry is the estimation of
the robot motion from internal
sensors (e.g. IMU or velocity)

- odometry itself is very noisy
and unreliable

:::ROS

Reducing environmental inaccuracies

Even if assuming that there SESVANE. JE
are no unexpected failuresin =~ T
the robot modules, some of O |
the robot modules are R
designed to cope and e W
reduces known sources of & gl s
uncertainty and to integrate N oy
data together Wi\ v 3

Mapping integrates sensor readings (e.g., laser range scanner) together
reducing odometry error thus obtaining a valid map of the environment

AORUAT™,

XX
h >

forad Fa

{5/ fei)

000 2 s

"z =

XX R

Developing a robot in ROS

« Modularity and scalability of
nodes and topics help in
developing complex integrated
system but...

e ...still the resulting ROS
computational graph is
impossible to be analyzed at
glance

:::ROS

)
@
i)
@)
-
©
Q
-
q0)
Yy—
@)
n
e

The graph of ROS nodes and top

ROS

How to program robots then?

* A lot of components and
modules integrated among them

- Sensors and robot hardware are Making even a simple run with a
noisy and can fail robot can be very time

consuming

 Impossible to control all possible
sources of uncertainty

:::ROS

How to program robots then?

* A lot of components and
modules integrated among them

e Sensors and robot hardware are
noisy and can fail

 Impossible to control all possible
sources of uncertainty

ROS

Developing and integrating
a new functionality into a
pre-existing robot can be

difficult too

Why ROS is useful

A lot of components and » Use packages provided by the
modules integrated among the community
* Split computation into nodes
« Sensors and robot hardware are . Test in advance in simulations

noisy and can fail .
Y « Use pre-recorded sensor inputs

« Visual inspection tool for
monitoring all of the robot
aspects

OWORUAT™
eoeo T
A AR W)
{= =7 i
f=f SN 2 Ve
| S
X X B TA B
e Sy

 Impossible to control all possible
sources of uncertainty

Why ROS is useful

* A lot of components and « Use packages provided by the
modules integrated among them community

« Split computation into nodes
» Test in advance in simulations
« Use pre-recorded sensor inputs

« Visual inspection tool for
monitoring all of the robot
aspects

o000 A58
ooe N

i s
o0 o R

e Sensors and robot hardware are
noisy and can fail

 Impossible to control all possible
sources of uncertainty

Why ROS is useful

* A lot of components and « Use packages provided by the
module integrated among them community
« Split computation into nodes
* Sensors and robot hardware » Test in advance in simulations

are noisy and can fail .
« Use pre-recorded sensor inputs

« Visual inspection tool for
monitoring all of the robot
aspects

OWORUAT™
eoeo T
A AR W)
{= =7 i
f=f SN 2 Ve
| S
X X B TA B
e Sy

« Impossible to control all
possible sources of uncertainty

An example: writing your own Node

YOUR YOUR
SENSOR ﬁ NODE ﬁ OUTPUT

Assume that you have to implement an algorithm for a robot,
e.g.a rPoduIe that detects narrow passagés that are challenging for the robot
navigation

ROS allows you to develop J(ust your node while usmg pre-built robot set up
(from the community) and to use pre-existing robot functionalities (remote
commands, mapplng odometry, sensors parsmg mapping, localization)

:::ROS

An example: writing your own Node

YOUR
- NODE | ===~ ========== >
V0.1

YOUR
OUTPUT

'
”
-’
e
”
-
-’
’
e
”
g
-’
”
-’
’/
-’

YOUR
YOUR
SENSOR > I:I/O1D1E > OUTPUT

\ -

NODE ﬁ YOUR
V15 OUTPUT

Probably you will develop several version of your node. The first one will have
bugs and wont work, then a new version is produced with improvements, ...

... and testing the result of different version together could be a good idea

:::ROS

An example: writing your own Node

YOUR YOUR
METHOD ﬁ OUTPUT

Using nodes and topics it is also straightforward to test several methods (to see
what is more useful for your robot) or to compare the results of your method with
the one available to the community (and release it).

:::ROS

ROS and Simulations

One of the most powerful tool that ROS have is the possibility to use integrated 2D
and 3D ROS simulations.

ROS simulation nodes replaces sensor drivers and allows to test the same
algorithm with real robot and simulations

:::ROS

ROS and Simulations

(iterative)
development of
a new method in simulations

Test and validation with real robots

« Robots in ROS simulations are modeled starting from their real counterpart.

» This allow a fast transitioning from tests performed with simulation and with real
robot just changing a few lines of code.

:::ROS

Simulations with GAZEBO

Gazebo (3D) is the most popular and used ROS
simulation tool, and it allows to simulate mobile
robots, UAVs, manipulators, indoor and outdoor
environments, ...

Simulations with STAGE

Stage is a simple 2D robot simulator.

It is useful for testing multi-robot systems,
swarm robotics (even 10k robots) and for 1
testing robotic tasks that require a higher level -IT-
of abstraction.

Besides Gazebo and Stage, ROS can work with
many commercial and open-source robotic

simulation tools. =1 .
@ []
[] @
[] []

:::ROS

Another solution - use datasets

SR

Another important tool embedded in ROS is the possibility to record robot runs (in simulations or
with real robots and to replay them).

ROS bags store a time-stamped serialized version of all selected topics
(sensors, nodes outputs, ...)

Different algorithms can be tested with the same input to test improvements
Bags can be reproduced at 2x, 4%, 5x - speed up of development times
Publicly available datasets are shared among the community

:::ROS

Wrapping up

v
=,
N /
N
ROS
BAG

:::ROS

With the only constraint of using the
same topics and the same msg
format, you can switch between:

- real robots
 simulations
 pre-recorded data streams

without changing the other part of
the robot code.

The rest of the robot code structure
and of the nodes used remain the
same.

Wrapping up

.

v

ROS
BAG

:::ROS

YOUR ROBOT

This has multiple (positive) side
effects:

 You can focus on the specific task
you want to develop

 You can develop a robot even
without having a robot - use
simulations

* You are not even forced to acquire
no runs - just use datasets/rosbags

Debugging tool with ROS

Even using simulations or ROS bags, robots are still complex.
ROS offers several visualization tools that are useful for

debugging of a complex system.

@ ® @ rqt_image_view__ImageView - rqt

rqt_graph__RosGraph - rqt

Himage View —~—
Jcanny_edge_my_Ffacefimage canny = || & | 2/ | |0 | 10,00m .| | B ZFNode Graph 0@ -0
" . ? | | Nodes/Topics (all - =HERTD
acefimage canny mouse left Smooth scaling odes/Toples (all) / / L
Group: |4 % Namespaces v/ Actions v tf v/ Images | v/ Highlight v Fit 1)
Hide: | Dead sinks Leaf topics v! Debug v/ tF Unreachable v/ Params
fturtlel
furtlel/pose

L —v

@ Murtlel/color_sensor
e
@ > Murtiel/cmd_vel

SOORUAT
T
) i
\

)

RViz is the main visualization tool of ROS.

B |t is used to display sensor readings, maps, cost maps, joints, TF,
4 and, in general, to’have an overview of the internal status of the
o robot and of all its sensors and nodes.

cpr_mover6.rviz* - RViz

c.) fyinteract | S MoveCamera [JSelet 4 FoousCamera c=mMeaswre . 2DPoseEstimate .~ 2DNavGoal @ PublshPoint & =
e Views * 3 Displays x
[~ * @ Global Options
E .7 Clobals(patusrok Type: | TopDownOrtho = Zero 'I;:;E“"
» @ Grid & Current View = Link Tree ... Links in Alphabetic
ﬁ * i, RobotModel] Near Clip... 0.01 Expand Li
>3 TF TargetFra... <Fixed Frame> . il“;“"sf : g
* ~ LaserScan L] scale 32.7988 v
» ¢ Bumper Hit = Angle -6.72003 il
é » P2 map] X -1.35336 by
» @ Global Map & Y 2.04398 » Position
g * B Local Map o » Orfent.. i1
B RS iy
v Planner [» & geoJol..
= » v Status: Ok > & geoJoi..
Topic /move_base/DWAPlan.. » ¢ geoJoi..
Unreliable > ¢ qeool.. =
- Line Style Lines
pa’ Color Wo; 12,255
A Alpha 1
Buffer Length 1
» Offset 0;0;0
¢ Cost Cloud]

«v

Trajectory C... &
» v Status: Ok

[select

) Interact | < Move Camera 4 FocusCamera == Measure - 2DPoseEstimate .~ 2DNavGoal @ PublishPoint o =,

Topic /move_base/DWAPlan Jen u;“"“’s : = = -
Unreliable < ;i‘;?‘i:f’:”s op Type: | Orbit (rviz) - zera
selectable [} Background C... I 48;48;48 ¥ Current View Orbit (rviz)

Style Flat Squares Frame Rate 30 NearClip... 0.01

Size (m) 0.04 » v Global Status: TargetFra... map

Alpha 1 v @ Grid = Distance 9.52754

» ¥ Status: Ok
Reference Fra... <Fixed Frame>
Plane Cell Count 10
Normal CellC... ©

Yaw 3.95541
Pitch 0.364797
» FocalPoint 1.2137;1.9063;0...

Decay Time 0
Position Tran... XYZ
Color Transfo... Intensity

Queue Size 10 cell Size 1
Channel Name total_cost Line style Lines
Use rainbow < Color W 160; 160; 164
Alpha 0.5
Plane XY 100.33 Wall Time: | 1475585291.12 | Wall Elapsed: |100.29
» Offset 000
* i, RobotModel] & X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options.
* i LaserScan &
» P2 Map =
» # Golobal_Plan @
» ~ Local_Plan]
» @ Marker
.
v .=
* ¥ Status: Ok
Color Mss; 00
Alpha 1
Topic local_costmapyinflat.
2 obstacles
» v Status: Ok
Color W 255,00
Alpha
Topic local_costmap/abst...
» “ Particle Cloud
» ZZ PoseArray
v) Axes
»aFTE

Topic
nav_msgs:GridCells topic to subscribe to.

Add Save Remove Rename
@ Time ¥
ROS Time: | 1407551277.42 ROS Elapsed: |251.65 wall Time: |1407551277.46 wall Elapszd 251.65 Experimental

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel: Zoom. Shift: Mare options. 30 fps

ROS command line tools

 read and publish messages on topic

 have a list of all active services/nodes/topics/params
- find packages and folders

« compilation tools

» edit tools

 check tf
 check frequency of nodes

:::ROS

ROS installation

« ROS can be installed with multiple OS, but the simplest way
for starting is using Ubuntu

* Each version of Ubuntu has its own ROS distro:
 Ubuntu 16.04 - ROS Kinetic
« Ubuntu 17.04 - ROS Lunar
 Ubuntu 18.04 - ROS Melodic

 This year (2019) no new ROS version cause ROS 2.0 is on its
way

e Stick with a LTS (ROS Kinetic or ROS Melodic)
 AVM is fine too for starting

:::ROS

ROS installation

* Follow guide at http://wiki.ros.org/ROS/Installation

» pasically installation on Ubuntu is:
sudo apt install ros-melodic-desktop-full
and wait

* then follow the basic tutorials (2/3h tops)
http://wiki.ros.org/ROS/StartGuide
http://wiki.ros.org/ROS/Tutorials

e and you are ready to go, e.g. with simulated robots.

:::ROS

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/StartGuide
http://wiki.ros.org/ROS/Tutorials

Sources - References

« Wiki.ros.org

« ROS Robot Programming
A Handbook Written by Turtlebot3 Developers

(available at http://www.robotis.com/service/download.php?no=719)

* Robotis Turtlebot3 documentation

http://emanual.robotis.com/docs/en/platform/turtlebot3/getting started/

* Jason O'Kane, A Gentle Introduction to ROS
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

:::ROS

http://www.robotis.com/service/download.php?no=719
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

We have robots!
Ask about projects!

