
An introduction to

matteo.luperto at unimi.it

ROS: the Robot Operating System

ROS is an open-source, meta-operating system
for your robot. It provides the services you
would expect from an operating system,
including hardware abstraction, low-level
device control, implementation of commonly-
used functionality, message-passing between
processes, and package management. It also
provides tools and libraries for obtaining,
building, writing, and running code across
multiple computers. [wiki.ros.org]

Robot software architecture
Low level functionalities as real-time
motor controllers, sensors drivers,

battery management

Core functionalities as mapping,
localization, navigation, people

detection

Reasoning mechanism for path
planning, task allocation, self

management

+

+

Robot software architecture

The development of (even a single)
robots (functionality) requires both low-
level hardware related and high-level AI-

based mechanism

Modularity and scalability are
consequently core features in a robot

software architecture

ROS provide this

ROS has established itself as the de-
facto standard for robot development

More at:
robots.ros.org

Our ROS robots

Sensors with ROS [wiki.ros.org]

What is ROS?
Is a Meta-Operating System

• Scheduling – loading – monitoring, and error handling

• virtualization layer between applications and distributing computing resources

• runs on top of (multiple) operating system(s)

• is a framework

• not a real-time framework but embed real-time code

• enforce supports a modular software architecture

ROS SW architecture
• distributed framework of processes (Nodes)

• enables executables to be individually designed and loosely
coupled at runtime.

• processes can be easily shared and distributed.

• supports a federated system of code Repositories that enable
collaboration to be distributed as well.

This design, from the filesystem level to the community level,
enables independent decisions about development and
implementation, but all can be brought together with ROS
infrastructure tools.

More ROS features

• thin: ROS is designed to be as thin as possible

• easy to integrate with other frameworks and libraries

• language independence
core languages are Python and C++ but you can use what you want

• easy testing: built in unit/integration test framework and
debug tool

• scaling: ROS tools can be distributed across different
machines and is appropriate for large development process

The core idea behind all of this is: code reuse + modularity

What ROS provides
• core and advanced robot

functionalities
(mapping, localization,
navigation, obstacle
avoidance)

• drivers and integration with
sensors

• integration with multiple robot
architectures
UAV – manipulators –wheeled
robots

• integration with libraries
(OpenPose, OpenCV, deep
learning fw)

• simulation tools

All free and ready to use
Support from the community

ROS-community

• 10y of ROS now
• last version: ROS Melodic (2019)
• next mayor release: ROS 2

Core aspects of

ROS aspects
• nodes
• topics

• messages

• services

• actions
• transforms

• debugging Tools
• simulations
• bags

Building blocks of ROS

Communication / SW architecture

Developers tools

ROS nodes

A node is a process that performs
computation:

• nodes are combined together into a
graph and communicate with one
another using streaming topics, services,
and parameters,

• are meant to operate at a fine-grained
scale,

• a robot control system will usually
comprise many nodes.

ROS nodes

For example, one node controls a laser range-finder,
one Node controls the robot's wheels motors, one
node performs mapping, one localization, one node
performs path planning, one node gives velocity
commands to the wheels, one node provides a
graphical view of the system, and so on.

ROS nodes

The use of nodes in ROS provides several benefits to the
overall system.

• fault tolerance as crashes are isolated to individual nodes.

• code complexity is reduced in comparison to monolithic
systems. Implementation details are also well hidden - nodes
expose a minimal API –

• alternate implementations, even in other programming
languages, can easily be substituted.

Nodes and topics

Topics are named buses over
which nodes exchange messages.
• topics have anonymous publish/subscribe semantics,

which decouples the production of information from its
consumption.

• nodes are not aware of who they are communicating
with.

• nodes that are interested in data subscribe to the relevant
topic; nodes that generate data publish to the relevant
topic.

• there can be multiple publishers and subscribers to a
topic.

nodes
topics

ROS topics
and messages

• each topic is strongly typed by the ROS message type used to publish to it

• nodes can only receive messages with a matching type.

• type consistency is not enforced among the publishers, but subscribers
will not establish message transport unless the types match.

• all ROS clients check to make sure that an MD5 computed from
the message format match.

ROS master
• the ROS Master provides naming

and registration services to the
rest of the nodes in the ROS
system.

• it tracks publishers and
subscribers to topics.

• it enables individual ROS nodes
to locate one another. Once
these nodes have located each
other they communicate with
each other peer-to-peer.

ROS master and nodes

• the ROS master is a process and it is
defined by its IP/port shared across all
nodes

• acts as coordinator and manages the
communication among nods

• this allows nodes to be distributed on
different machines
(in the same network)

• this mechanism allowing to decouple
the execution of a process from the
machine where the process id
distributed

ROS master and nodes

• robots may have to perform several
(computationally intensive)
tasks together

• hardware decoupling allows to
distribute such tasks on dedicated
hardware (e.g., Nvidia Jetson for GPUs)

• moreover, robots are hardware and
this architecture allows to easily
interface control boards for sensors,
motors, etc.. (e.g., Arduino)

ROS on multiple platforms

• as ROS is a middleware, computation can be
distributed across different OS

• however, this in practice is far than ideal
• OS independence is de-facto provided for linux-

based and embedded systems.
• rule-of-thumb: use Ubuntu (not all versions either!)

Set up a ROS topic publisher/subscriber

• a subscriber node registers to the
ROS MASTER

• and announces its
• Name
• Topic name
• Message Type

• communication is performed using
XMLRPC

Set up a ROS topic publisher/subscriber

A publisher node
now registers to
the
ROS MASTER

Set up a ROS topic publisher/subscriber

The ROS MASTER
distributes info
as all subscribers
that want to
connect to the
topic and to the
publisher node

Set up a ROS topic publisher/subscriber

The subscriber
node requests a
direct connection
to the published
node and transmits
its information to
the publisher node

Set up a ROS topic publisher/subscriber

The publisher node
sends the URI
address and port
number of its TCP
server in response
to the connection
request.

Set up a ROS topic publisher/subscriber

At this point a
direct connection
between publisher
and subscriber
node is established
using TCPROS
(TCP/IP based
protocol)

Communication among nodes

After communication between
nodes is established, ROS
provides 3 types of
interactions
• Topics
• Services
• Actions

Communication among nodes

• The standard communication mechanism is using ROS topics.
• Nodes can have multiple topics
• Nodes can even use topics for internal communication
• Continuos -loop()- or one-shot (e.g. when data are ready)

ROS Services

• ROS services are
synchronous
request from
one node to
another.

• Request/Reply
mechanism.

A client can make a persistent connection to a service, which enables higher performance at the
cost of less robustness to service provider changes.

ROS Actions
• ROS services are

asynchronous
request from
one node to
another.

• Request/Reply
mechanism, with
feedbacks and
the possibility to
cancel the
request.

If the service takes a long time to execute, the user might want
the ability to cancel the request during execution or get periodic
feedback about how the request is progressing.
Action Services are for these tasks.

ROS parameter server

The parameter server is a shared,
multi-variate dictionary that is
accessible via network APIs.

• nodes use this server to store
and retrieve parameters at
runtime.

• used for static, non-binary data
such as configuration
parameters.

• globally viewable so that tools
can easily inspect the
configuration state of the system
and modify if necessary.

Example of params are map
size/resolution and sensor

configuration/settings.

ROS Transforms
• in robotics programming, the robot’s joints, or wheels with

rotating axes, and the position of each robot through
coordinate transformation are very important

• in ROS, this is represented by TF (transforms)

• TF are published with a mechanism
similar to (and parallel) the one
used for ROS Topics

ROS
Transforms

• all components of the
robots should be
connected through a chain
of TF to a global reference
frame (world or map)

• this is particularly
important, as TFs allow the
robot to project sensors
onto a global reference
frames

ROS Transforms

• some TF are static (e.g., the
position of sensors w.r.t.
The robot reference frame)

• some TF are dynamic and
are computed real-time by
nodes
(e.g. the position of the
robot in the map, the
position of joints in a hand
gripper)

ROS Transforms

• TF can become complex,
especially for robot with a
lot of Degrees Of Freedom
(DOF) as grippers

• ROS provides visualization
tools for controlling such
aspects

Developing toos

Developing a robot in ROS

• mobile robots easily became
very complex objects

• issues can emerge with single
components, hardware failures,
integration, …

• impossible to control all
possible sources of uncertainty

Environmental inaccuracies

• All of the robot available
knowledge is based on sensors
but…

• …sensors itself are (very) noisy

• odometry is the estimation of
the robot motion from internal
sensors (e.g. IMU or velocity)

• odometry itself is very noisy
and unreliable

Reducing environmental inaccuracies

Even if assuming that there
are no unexpected failures in
the robot modules, some of
the robot modules are
designed to cope and
reduces known sources of
uncertainty and to integrate
data together

Mapping integrates sensor readings (e.g., laser range scanner) together
reducing odometry error thus obtaining a valid map of the environment

Developing a robot in ROS

• Modularity and scalability of
nodes and topics help in
developing complex integrated
system but…

• …still the resulting ROS
computational graph is
impossible to be analyzed at
glance

The graph of ROS nodes and topics of a real robot

How to program robots then?

Making even a simple run with a
robot can be very time

consuming

• A lot of components and
modules integrated among them

• Sensors and robot hardware are
noisy and can fail

• Impossible to control all possible
sources of uncertainty

How to program robots then?

• A lot of components and
modules integrated among them

• Sensors and robot hardware are
noisy and can fail

• Impossible to control all possible
sources of uncertainty

Developing and integrating
a new functionality into a
pre-existing robot can be

difficult too

Why ROS is useful

• A lot of components and
modules integrated among them

• Sensors and robot hardware are
noisy and can fail

• Impossible to control all possible
sources of uncertainty

• Use packages provided by the
community

• Split computation into nodes

• Test in advance in simulations

• Use pre-recorded sensor inputs

• Visual inspection tool for
monitoring all of the robot
aspects

Why ROS is useful

• A lot of components and
modules integrated among them

• Sensors and robot hardware are
noisy and can fail

• Impossible to control all possible
sources of uncertainty

• Use packages provided by the
community

• Split computation into nodes

• Test in advance in simulations

• Use pre-recorded sensor inputs

• Visual inspection tool for
monitoring all of the robot
aspects

Why ROS is useful

• A lot of components and
module integrated among them

• Sensors and robot hardware
are noisy and can fail

• Impossible to control all
possible sources of uncertainty

• Use packages provided by the
community

• Split computation into nodes

• Test in advance in simulations

• Use pre-recorded sensor inputs

• Visual inspection tool for
monitoring all of the robot
aspects

An example: writing your own Node

Assume that you have to implement an algorithm for a robot,
e.g. a module that detects narrow passages that are challenging for the robot
navigation.

ROS allows you to develop just your node while using a pre-built robot set up
(from the community) and to use pre-existing robot functionalities (remote
commands, mapping, odometry, sensors parsing, mapping, localization)

SENSOR

Robot
Core

YOUR
NODE

Other
nodes

YOUR
OUTPUT

An example: writing your own Node

Probably you will develop several version of your node. The first one will have
bugs and wont work, then a new version is produced with improvements, …

… and testing the result of different version together could be a good idea

SENSOR
YOUR
NODE
V 1.1

YOUR
OUTPUT

YOUR
NODE
V 0.1

YOUR
NODE
V 1.5

YOUR
OUTPUT

YOUR
OUTPUT

An example: writing your own Node

Using nodes and topics it is also straightforward to test several methods (to see
what is more useful for your robot) or to compare the results of your method with
the one available to the community (and release it).

Robot
Core

METHOD
2

OUTPUT 2

METHOD
1

YOUR
METHOD

OUTPUT 1

YOUR
OUTPUT

ROS and Simulations

One of the most powerful tool that ROS have is the possibility to use integrated 2D
and 3D ROS simulations.

ROS simulation nodes replaces sensor drivers and allows to test the same
algorithm with real robot and simulations

ROS and Simulations

(iterative)
development of
a new method in simulations

Test and validation with real robots

• Robots in ROS simulations are modeled starting from their real counterpart.

• This allow a fast transitioning from tests performed with simulation and with real
robot just changing a few lines of code.

Simulations with GAZEBO
Gazebo (3D) is the most popular and used ROS
simulation tool, and it allows to simulate mobile
robots, UAVs, manipulators, indoor and outdoor
environments, …

Simulations with STAGE

Stage is a simple 2D robot simulator.
It is useful for testing multi-robot systems,
swarm robotics (even 10k robots) and for
testing robotic tasks that require a higher level
of abstraction.

Besides Gazebo and Stage, ROS can work with
many commercial and open-source robotic
simulation tools.

Another solution – use datasets

• Another important tool embedded in ROS is the possibility to record robot runs (in simulations or
with real robots and to replay them).

• ROS bags store a time-stamped serialized version of all selected topics
(sensors, nodes outputs, …)

• Different algorithms can be tested with the same input to test improvements

• Bags can be reproduced at 2x, 4x, 5x → speed up of development times

• Publicly available datasets are shared among the community

SENSOR

Robot
Core

YOUR
NODE

Other
nodes

ROS
BAG

Wrapping up

ROS
BAG

YOUR ROBOT

With the only constraint of using the
same topics and the same msg
format, you can switch between:

• real robots

• simulations

• pre-recorded data streams

without changing the other part of
the robot code.

The rest of the robot code structure
and of the nodes used remain the
same.

Wrapping up

ROS
BAG

YOUR ROBOT

This has multiple (positive) side
effects:

• You can focus on the specific task
you want to develop

• You can develop a robot even
without having a robot – use
simulations

• You are not even forced to acquire
no runs – just use datasets/rosbags

Debugging tool with ROS

Even using simulations or ROS bags, robots are still complex.
ROS offers several visualization tools that are useful for
debugging of a complex system.

RViz is the main visualization tool of ROS.
It is used to display sensor readings, maps, cost maps, joints, TF,
and, in general, to have an overview of the internal status of the
robot and of all its sensors and nodes.

ROS command line tools

• read and publish messages on topic

• have a list of all active services/nodes/topics/params

• find packages and folders

• compilation tools

• edit tools

• check tf

• check frequency of nodes

• …

ROS installation
• ROS can be installed with multiple OS, but the simplest way

for starting is using Ubuntu

• Each version of Ubuntu has its own ROS distro:
• Ubuntu 16.04 → ROS Kinetic
• Ubuntu 17.04 → ROS Lunar
• Ubuntu 18.04 → ROS Melodic

• This year (2019) no new ROS version cause ROS 2.0 is on its
way

• Stick with a LTS (ROS Kinetic or ROS Melodic)

• A VM is fine too for starting

ROS installation

• Follow guide at http://wiki.ros.org/ROS/Installation

• basically installation on Ubuntu is:
sudo apt install ros-melodic-desktop-full
and wait

• then follow the basic tutorials (2/3h tops)
http://wiki.ros.org/ROS/StartGuide
http://wiki.ros.org/ROS/Tutorials

• and you are ready to go, e.g. with simulated robots.

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/StartGuide
http://wiki.ros.org/ROS/Tutorials

Sources - References

• Wiki.ros.org

• ROS Robot Programming
A Handbook Written by Turtlebot3 Developers
(available at http://www.robotis.com/service/download.php?no=719)

• Robotis Turtlebot3 documentation
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/

• Jason O’Kane, A Gentle Introduction to ROS
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

http://www.robotis.com/service/download.php?no=719
http://emanual.robotis.com/docs/en/platform/turtlebot3/getting_started/
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf

We have robots!
Ask about projects!

