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An introduction to MDPs



Planning under uncertainty

• Action selection is often affected by uncertainty

• Example:

Fast forward for 2 seconds



Planning under uncertainty

Am I always sure 
about what’s 

going on?

Are the effects of 
my actions 
perfectly 

predictable?

Deterministic 
vs 
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transitions

Fully observable 
vs 

Partially observable
states



Examples
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move B

• Deterministic transitions, fully observable states 

• Only actuation is needed, no sensing!
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Markov Decision Processes (MDP)

• We assume full observability of states, but non-deterministic actions

• We cannot specify a transition function like before, instead we give a set of 
transition probabilities

• State transitions satisfy the Markov property: they depend only on the current 
state and not on states visited before

• The Markov property can be stated more generally: the state encodes all the 
information we need to pick an optimal action

Probability of reaching state s’, given that 
current state is s and action a is taken



Example (Markovian, deterministic)



Example (Markovian (?), deterministic)

If the snake world is finite, then …



MDPs

• Can we formulate the problem asking for a plan?

• Plans are unfit for this situation: we cannot tell how to reach some goal by 
giving a mere sequence of actions

• We need a policy

• Policy execution:
1. Observe current state s

2. Execute

3. Repeat from 1

Given the current state, it returns what action to play 
(deterministic)



MDPs

• We previously spoken about action costs, in MDPs we speak about immediate 
rewards

• Rewards can be thought as a generalization of what before we described by means 
of goal states specification

• Solving the MDP means finding a policy that maximizes the expected reward over 
some finite or infinite time horizon; such policy is called the optimal policy (𝜋∗)

The payoff that an agent gets when she goes from 
state s to state s’ with an action a

Some features of policies
• Deterministic: given a state it does not randomize on which action to take
• Stationary (or memoryless): it does not change over time

In MDPs, up to some reasonable properties or common operative choices, these 
assumptions are not restrictive: there always exists an optimal policy that is deterministic 
and stationary



Stationary optimal policies

• In infinite horizon MDPs, the optimal policy is stationary (or memoryless):

S

What’s the best 
decision to make?

• The Markov property says that all the information (transitions, rewards, …) we need 
to decide is encoded in the state. Thus, the answer to the above question only 
depends on the state, not on the time of visit. Does this hold in finite horizon 
settings?

• Is this true in finite horizon MDPs?

𝒔𝟎

𝒔𝟏 𝒔𝟒

𝒔𝟐 𝒔𝟓

𝒔𝟑 𝒔𝟔

(assume uniform probabilities)

𝜋∗
𝜋∗

The optimal policy depends on the 
time of visit!



Deterministic optimal policies

• Optimal policy is deterministic (intuition):

S
Suppose that in some state the optimal 
policy prescribes to randomize over 
two actions

By following such policy the agent will get an expected reward of

where R1 (R2) is the expected reward from S when playing the top (bottom) action

Three cases:
1. R1 = R2 : the agent is indifferent, she can pick always the same action as well
2. R1 > R2 : the agent can gain pushing probability to the top action
3. R1 < R2 : the agent can gain pushing probability to the bottom action



MDP Value iteration

• Let’s introduce the concept of value function

• How does it work?

• This quantity is defined as the expected cumulative reward that can be 
obtained by executing 𝝅 from s

An agent executing policy 𝜋 is in state s: how happy is she? 
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Discount rewards more and 
more as they happen in the 
long future

Example with H=2



MDP Value iteration (intuition)

Now the horizon is 2. The optimal policy would select the action that maximizes 
the immediate expected reward plus the expected discounted reward of acting 
optimally from the arrival state

The horizon is 1, there’s room for just one action. The best thing to do is 
selecting the action that maximizes the immediate expected reward

The horizon is zero, no action no reward

Expected value of the optimal policy from state s when H=k



MDP Value iteration

• We obtain a recursive definition:

• In infinite horizon settings the above definition becomes the Bellman Equation

• Solved with iterative methods
• Encodes the Bellman’s principle of optimality


