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Autonomous Exploration 

• Problem: a robot is deployed in an initially 
unknown environment  

 

• Sensors (e.g., laser range scanners) allow it 
to acquire spatial data in its surroundings 

• Goal: we want to build a map of the whole environment 

 

• Performance: we want an accurate map and we want to do it quickly 



Autonomous Exploration 

• Next Best View approach ([Yamauchi 1997], [Latombe et al. 2002], [Tovar et al. 2006], [Basilico et 
al. 2011]): 

– acquire a partial map 

– integrate the partial map in the global map 

– select the next best observation location among a set of candidate locations 

– reach the selected location 

 

• Determine decisions in step 3: where to perform the next sensing action? Exploration strategy 



Combining Criteria 
• Evaluate candidate locations with an utility function that combines different evaluation criteria: 

travelling cost, information gain estimate, overlap 

 

• Optimize decisions locally in order to optimize performance globally 

Latombe et al. 2002 Burgard et al. 2005 Tovar et al. 2006 Visser et al. 2008 

Map Building 

minimize the travelled distance  

minimize the power consumption 

maximize the map quality 

Search and Rescue  

minimize the needed time 

maximize the mapped area 

keep in contact with the base station 

maximize found victims 

• Different works proposed ad hoc methods to combine criteria, e.g., 



Multi-Criteria Decision Making 
• A decision theoretic approach: Multi-Criteria Decision Making (MCDM) 

– Assign a weight       to every subset of criteria A 

– If            criteria are redundant 

– If            criteria are synergic 

– Compute utility for a candidate location p by combining utilities of each single criterion 
with the Choquet fuzzy Integral: 

• “Distorted average” that accounts for relationships between criteria 

• Theoretical properties, e.g., Pareto optimality, stability, continuity, idempotence 

• Generalizes some of the techniques proposed in literature 

• Criteria contributions are explicitly quantified only by weights 

• The number of weights to set is exponential in the number of criteria 2
n
− 2



Example results 
• Objective: assess better informed exploration strategies (MCDM) can achieve better global performance 

 

• Map-building: simulated exploration in Player/Stage, grid-based and geometrical map 
 
 
 

 
 
 
 
 

• Search and Rescue: simulations in USARSim, exploiting a controller from Robocup Virtual Rescue 
Competition 



Multi-robot exploration 

• Let’s consider a more complex scenario where: 
• Multiple robots are present 
• Robots deliver perception data to a base station (BS) which collects them and 

maintains a global map 
• Communication introduces constraints! 



Communication 

• Communication between robots is limited by communication 
range (it is unrealistic to assume that robots are always all-to-all 
connected) 

 

• Exploration strategies must abide to some communication 
requirements (besides pursuing the performance objectives) 



Communication requirements 

• Continuous connection ([Birk et al., 2007]): each can exchange data with 
the BS at any time 

 

• Periodic reconnection: communication opportunities with the BS must 
occur each T time units (e.g., [Hollinger et al., 2010]) 

 

• Recurrent reconnection ([Stump et al., 2011]): communication 
opportunities with the BS must occur each time they acquire new 
information (hard or soft) 



Hard vs soft recurrent reconnection 

• hard constraint: (i) when a robot acquires some information at some location, it 
must be able to forward it to the BS from that same location, and (ii) before any 
new plan is computed, the whole team (robots and BS) must be globally 
connected 

 

• soft constraint: the communication between the BS and the robots, despite being 
a desired condition, needs not to be maintained on a regular basis 

 



Hard vs soft recurrent reconnection 

Hard Soft 



Model Assumptions 



Exact formulation  
(hard recurrent communication) 

Given: 
• Graph G=(V,E) representing the 

environment 
• Robot locations 
 
Assign each robot s.t.: 
• communication is guaranteed 
• objective function is maximized 

 
 



Experimental setting 

Office Maze 



Experimental results 

Office environment 



Experimental results 

Maze Environment 



Experimental results 
Open Environment 



Recurrent communication 

• Hard recurrent connectivity requires to solve an ILP at each planning epoch 
 
• Can we make it resolution more efficient in practice by incurring in some quality 

loss? Let’s separate the problem: 

Optimal configuration problem:  
find the subset of vertices to be 
occupied by a robot, maximize 

expected information gain 

Optimal deployment:  
compute who goes where in a 
given configuration, minimize 
cumulative travelled distance 

P ? 



Recurrent communication 

Directed graph G=(V,E), some vertices are frontiers.  
K robots 
Rooted- Budget Price Collecting Steiner Tree Problem (NP-Hard on graphs with 
unitary edges) 
 
Apx known 4 + eps 
Ours apx ceil(k/delta) 
 
Optimal deployment: Hungarian algorithm 
Aynchronicity 
 

• The optimal configuration problem it’s basically a R-BPCST: Rooted Budget Prize 
Collecting Steiner Tree Problem 
 

• Steiner Tree Problem: given a graph find a subgraph which connects a set of 
terminals and that is a tree 
 

• Prize collecting: each connected terminal gives a prize, maximize the total prize 
 

• Budget: the tree has a cost given by the sum of individual edge costs, it must 
not exceed a budget 
 

• Rooted: one terminal to be connected is fixed 

prize of a frontier node 



Recurrent communication 

Apx known 4 + eps 
Ours apx ceil(k/delta) 
 
Optimal deployment: Hungarian algorithm 
Aynchronicity 
 

• R-BPCST is NP-Hard on graphs (even on those with unitary edges and on arbitrary 
trees) 
 

• On unitary trees? (P? … ) 
 

• It belongs also to APX (4+eps approximation algorithm available in literature) 
 

• We designed a ceil(k/delta) approximation algorithm where delta is an arbitrary 
positive integer and k is the number of robots. If we operate with a reasonably 
small number of robots, it gives a better quality guarantee than the constant 
factor algorithm. 


